
US0080 10487B2

(12) United States Patent (10) Patent No.: US 8,010,487 B2
Richards0n et al. (45) Date of Patent: Aug. 30, 2011

(54) SYNCHRONIZATION AND 7,032,033 B1 * 4/2006 Ledoux et al. TO9,248
7,146,399 B2 * 12/2006 Fox et al. TO9,203 COLLABORATION WITHINPEER-TO-PEER 7,152,076 B2 * 12/2006 Sundararajan et al. 1.1

AND CLIENTASERVER ENVIRONMENTS 7.225,231 B2 * 5/2007 Mendez et al. TO9,206
7,251,669 B1 7/2007 Arora

(75) Inventors: Ransom Lloyd Richardson, Beverly, 7,564,874 B2 * 7/2009 King 370,503
MA (US); Edward J. Fischer 7,720,884 B1* 5/2010 Gandhi et al. TO7,804

.. 7,725,669 B1* 5/2010 Bingham et al. 711/162
Sambridge MAUS); Dana Zircher, 7,734,828 B2* 6/2010 Prasad TO9,248
Woburn, MA (US); Christopher 2002/01697.45 A1* 11, 2002 Hotti et al. 707/1
Norman, Princeton, MA (US); Hugh 2003/0130984 A1* 7/2003 Quinlan et al. 707/1
Francis Pyle, Salem, MA (US); Michael 2004/01 17666 A1 6/2004 Lavender
Andrew Jeffers, Boston, MA (US); 2004/O128354 A1* 7/2004 Horikiri et al. TO9.204

s s s ck

Robert Sean Slapikoff, Chelmsford, 20040193952 A* 9 2004 Narayanan et al... T14? 13
MA (US) (Continued)

OTHER PUBLICATIONS (73) Assignee: Microsoft Corporation, Redmond, WA
(US) Chou, "Get into the Groove: solutions for secure and dynamic col

laboration'. TechNet Magazine Jan. 2007, pp. 58-63.*
(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 495 days.

(Continued)

Primary Examiner — Hung TVy
(21) Appl. No.: 12/147,862 Assistant Examiner — Phuong-Thao Cao

(74) Attorney, Agent, or Firm — Hope Baldauff Hartman,
(22) Filed: Jun. 27, 2008 LLC

(65) Prior Publication Data (57) ABSTRACT

US 2009/03273O2A1 Dec. 31, 2009 Tools and techniques are described for synchronization and
• - us collaboration within peer-to-peer and client/server environ

(51) Int. Cl ments. These tools may provide methods that include estab
Go,F iz/30 (2006.01) lishing peer-to-peer relationships between two or more client

systems. These relationships enable the client systems to
(52) U.S. Cl. 707/622; 707/623; 709/227; 709/248 create respective local instances of workspaces, shared
(58) Field of Classification Search 709/227, between the client systems to allow them to collaborate with

709/248; 707/999.203,622, 623,999.201 one another. The client systems may participate in peer-to
See application file for complete search history. peer synchronization flows with one another, with the Syn

chronization flows representing updates made local to the
(56) References Cited shared workspaces of the client systems. The methods may

also establish establishing a client/server relationship
U.S. PATENT DOCUMENTS between one of the client systems and a server system.

6,397,125 B1* 5/2002 Goldring et al. TOO/200 Through this client/server relationship, the client and server
33.63 R ck 5.38 R et al. 709/205 systems may participate in client/server synchronization

-- w aSUCCW flows, with these flows representing updates made to the local 6,662,212 B1* 12/2003 Chandhok et al. TO9,206
6,678,882 B1* 1/2004 Hurley et al. 717/121 shared workspace at the client system.
6,809,738 B2 * 10/2004 Hubrecht et al. 345,543
6,868,425 B1 3/2005 Bergstraesser 20 Claims, 9 Drawing Sheets

CLIENT 988 SCE:
SYSTEM f SYNC >

902 - er i is
RECEIVE

sches sinc SERVER
SYSTE

920

Oisa&E Tes
PRODUC- RRex CRRENT ENEFYANY

FIGN Es--- SCHEMA --PRODION FEERENCES 326 SCHEA 98
82 90s

MERGED :
SEA EOD CE
FDATEs 3.
928 CRRE

: cuRRENT scia
SCHEMA
3:

y

INCQRPORATE
ESGN E. EO

DTASE-scies--- scieiro
(CEQNE) 928 F&NER
92 9.

wo
328

RAGAE SADAE
FarE

CfANGES SEAN aii?

Mears CNE 322
92

YES
32

ERCSE
CAES
INFO

PROC)N
LATABASE

928.

US 8,010,487 B2
Page 2

2005/OO44530
2005/009 1233
2005/O193024
2005/O198074
2005/025 1523
2006/0085.380
2006/0101.064
2006, O155716
2006/0277224
2007, OO19683
2007/0O887O7
2007/0136325
2007/O186157
2007/O198744
2007/0219826
2007/0255787
2007/0276836
2008, 0028000
2008.0034012

U.S. PATENT DOCUMENTS

A1 2, 2005 Novik
A1 4/2005 Friske et al.
A1* 9/2005 Beyer et al. .
A1* 9/2005 Khayter et al.
A1* 11/2005 Rajamani et al. ...
A1 4, 2006 Cote et al.
A1* 5/2006 Strong et al.
A1* 7, 2006 Vasishth et al.
A1: 12/2006 Aftab et al. .
A1* 1/2007 Kryzyanowski
A1* 4/2007 Durgin et al. .
A1 6, 2007 Chan et al. ..
A1* 8, 2007 Walker et al.
A1* 8/2007 Wensley et al.
A1* 9/2007 Brodsky et al. ...
A1* 11/2007 Richardson et al.
A1 * 1 1/2007 Chatterjee et al.
A1 1/2008 Makismenka
A1 2, 2008 Novik

707/100
TO7/200

707/104.1

71.5/530
TO9,248

. 707/10

2008.OO77632 A1*
2008/0098.042 A1*
2008/O165807 A1*
2009,0240726 A1*

OTHER PUBLICATIONS

Microsoft Office Groove 2007 Product Guide, Sep. 2006, pp. 1-31.*
Castro et al., IEEE Computer Society, Proceedings of the Sixth IEEE
Workshop on Mobile Computing Systems and Applications entitled,
“A Programming Framework for Mobilizing Enterprise Applica
tions.” dated 2004; 10 pgs.
Website article entitled, “Introduction to the Microsoft Sync Frame
work Runtime.” dated Nov. 2007; 12 pgs.
Website article entitled, “Microsoft Launches Sync Framework.”
downloaded Jun. 2008; 6 pgs.
Website article entitled, “Get into the Groove: Solutions for Secure
and Dynamic Collaboration.” downloaded Jun., 2008; 6 pgs.

707/100
707/1

707/102
707/100
707,201
370,503
TO7/10
707/100

705/2
709/204

* cited by examiner

3/2008 Tysowski et al. 707,204
4/2008 Tian et al. TO7,201
7/2008 Nilo et al. 370,503
9/2009 Carter et al. TO7/103 R

U.S. Patent

RECEIVE
REVISION(S)

602A

CREATE
VERSION(S)

604A

SYCH TO
PEER(S)
606A

YES
614A

SELECT
WINNING
VERSION
616A

MARK OTHER
VERSIONS AS
CONFLICTING

618A

Aug. 30, 2011

o,

VERSION
TABLE
608

FIG. 6

Sheet 6 of 9 US 8,010,487 B2

RECEIVE
REVISION(S)

602N

CREATE
VERSION(S)

604N

SYCH TO
PEER(S)
606N

YES
614N

SELECT
WINNING
VERSION
616N

MARK OTHER
VERSIONS AS
CONFLICTING

618N

U.S. Patent Aug. 30, 2011 Sheet 7 Of 9 US 8,010,487 B2

SCLIENT 70 SERVER
SYSTEM \ SYSTEM

S3 102 106 Sg
RECEIVE RECEIVE

REVISION(S) REVISION(S)
602 704

CREATE SERVER p
VERSION(S) SYNC WALD.

604 M 110 706
w

w
M

W

w

/
SYCH TO 7
SERVER(S)

702 REJECT
REVISION(S)

716

ERROR2

722 720 N MARK
\ REVISIONS AS

Y. INVALID
YES 724 SYNC 718

REPORT

MARK 712
VERSIONS AS \
RELECTED Y.

726 M. REPORT TO
CLIENT

710

REPORT TO
PEERS
728 FIG. 7

U.S. Patent Aug. 30, 2011 Sheet 9 Of 9 US 8,010,487 B2

NY CLIENT 900 SCHEMA

S3 SYSTEM / SYNC 902 1 904 S as C
Is

RECEIVE S

SCHEM SYNC SERVER
SYSTEM

920

COMPARE TO
PRic- CURRENT CURRENT IDENTITY ANY

- - - SCHEMA - -o- PRODUICTION DIFFERENCES
DATABASE 926 SCHEMA 908

932 906

A
MERGED
SCHEMA LOAD CLONE
UPDATES : DB WITH

928 CURRENT
SCHEMA

CURRENT 910
SCHEMA

914

INCORPORATE
UIPDATED UPDATED

- SCHEMA - - - SCHEMA INTO
918 CLONE DB

916

DESIGN
DATABASE
(CLONE)

912

VALIDATE
UPDATED
SCHEMA IN
CLONE
920

PROPAGATE
CHANGESTO
MEMBERS

930

MERGE
CHANGES
INTO

PRODUCTION
DATABASE

FIG. 9 926

US 8,010,487 B2
1.

SYNCHRONIZATION AND
COLLABORATION WITHINPEER-TO-PEER
AND CLIENTASERVER ENVIRONMENTS

BACKGROUND

Collaboration tools may operate on a peer-to-peer model,
in which two or more client or peer systems establish peer
to-peer relationships, by which their respective users may
collaborate or cooperate on Some particular project of inter
est. As changes or revisions occur on the different peer sys
tems, the collaboration tools may sync or propagate these
changes to the other peer systems. Groups of these peer
systems may be configured so that no single peer serves as a
single central coordination point. Such groups of peer sys
tems may be characterized as “distributed” systems or “multi
master' systems.

Collaboration tools may operate on a client-server model,
in which certain functions are allocated to the server and other
functions are permitted to the client. In cases where the client
goes off-line, the client may be able to perform some limited
functionality. When the client returns online, the client and
server may sync any changes with one another. In some cases,
multiple different clients may communicate with the server in
a hub-spoke topology.

SUMMARY

Tools and techniques are described for synchronization
and collaboration within peer-to-peer and client/server envi
ronments. These tools may provide methods that include
establishing peer-to-peer relationships between two or more
client systems. These relationships enable the client systems
to create respective local instances of data, shared between
the client systems to allow them to collaborate with one
another. The client systems may participate in peer-to-peer
synchronization flows with one another, with the synchroni
Zation flows representing updates made locally to the data
shared between the client systems. The methods may also
establish establishing a client/server relationship between
one or more of the client systems and a server system.
Through this client/server relationship, the client and server
systems may participate in client/server synchronization
flows, with these flows representing updates made to the local
shared data at the client system, or updates made at the server
system.
The above-described subject matter may also be imple

mented as a method, computer-controlled apparatus, a com
puter process, a computing system, or as an article of manu
facture such as a computer-readable medium. These and
various other features will be apparent from a reading of the
following Detailed Description and a review of the associated
drawings.

This Summary is provided to introduce a selection of con
cepts in a simplified form that are further described below in
the Detailed Description. This Summary is not intended to
identify features or essential features of the claimed subject
matter, nor is it intended that this Summary be used to limit
the scope of the claimed subject matter. Furthermore, the
claimed Subject matter is not limited to implementations that
Solve any or all disadvantages noted in any part of this dis
closure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a combined block and flow diagram illustrating
systems or operating environments for synchronization and
collaboration within peer-to-peer and client/server environ
mentS.

5

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 2 is a combined block and flow diagram illustrating

additional aspects of the client systems and server systems as
shown in FIG. 1.

FIG. 3 is a combined block and flow diagram illustrating
components and data flows by which a given client system
may exchange peer-to-peer synchronization flows with any
number of other client systems, as well as participating in
client/server synchronization flows involving any number of
server systems.

FIG. 4 is a block diagram illustrating additional aspects of
a production database and related Schema, UI elements, and
tools as provided by a client-side collaboration application, as
shown in FIG. 3.

FIG. 5 illustrates process flows, denoted generally at 500,
related to instantiating in Syncing tools and applications. Such
as those discussed in connection with FIGS. 3 and 4.

FIG. 6 is a combined block diagram and flow chart, illus
trating components and process flows by which peer systems
may revise and synchronize revisions occurring locally on the
various peer systems.

FIG. 7 is a flow chart illustrating processes for performing
syncs between clients and servers.

FIG. 8 is a combined block diagram and flow chart, illus
trating processes for syncing data from server systems two
client systems, operable with data storage architectures.

FIG. 9 is a flow chart illustrating processes for updating
application designs on the client systems, in response to
design changes synced in from server systems.

DETAILED DESCRIPTION

The following detailed description is directed to technolo
gies for enhanced synchronization and collaboration within
peer-to-peer and client/server environments. While the sub
ject matter described herein is presented in the general con
text of program modules that execute in conjunction with the
execution of an operating system and application programs
on a computer system, those skilled in the art will recognize
that other implementations may be performed in combination
with other types of program modules. Generally, program
modules include routines, programs, components, data struc
tures, and other types of structures that perform particular
tasks or implement particular abstract data types. Moreover,
those skilled in the art will appreciate that the subject matter
described herein may be practiced with other computer sys
tem configurations, including hand-held devices, multipro
cessor Systems, microprocessor-based or programmable con
Sumer electronics, minicomputers, mainframe computers,
and the like.

In the following detailed description, references are made
to the accompanying drawings that form a part hereof, and
which are shown by way of illustration specific embodiments
or examples. Referring now to the drawings, in which like
numerals represent like elements through the several figures,
aspects of tools and techniques for synchronization and col
laboration within peer-to-peer and client/server environments
will be described.

FIG. 1 illustrates systems or operating environments,
denoted generally at 100, for synchronization and collabora
tion within peer-to-peer and client/server environments.
These systems 100 may include one or more client or peer
systems 102, with FIG. 1 illustrating two examples of such
systems, denoted at 102a and 102n (collectively, client sys
tems 102). As detailed further below, this description may
refer to these systems 102 as client systems, peer systems, or
member systems, depending on the context of the description,
and depending on the other systems with which these systems

US 8,010,487 B2
3

102 are interacting at a given time. Implementations of the
description herein may include any number of client systems
102, with FIG. 1 showing two examples only to facilitate this
description.

Turning to the client systems 102 in more detail, the client
systems 102 may contain respective instances of a collabora
tion application, as denoted at 104a and 104n (collectively,
collaboration application 104). In some instances, these col
laboration applications may enable one or more given client
systems 102 to interact with one or more external server
systems 106. In such instances, the server systems 106 and the
given client systems 102 may have a client/server relation
ship, and the collaboration applications 104 may serve as
client-side collaboration applications. Accordingly, the
server system 106 may include a server-side collaboration
application 108, which is adapted to cooperate with the client
side collaboration applications 104 to exchange synchroniza
tion flows 110 between the client and server systems.

Subsequent drawings and related description elaborate fur
ther on these client/server synchronization flows 110. How
ever, in overview, the collaboration applications 104 and 108
may enable one or more users (not shown) accessing the
client systems 102 to synchronize various data to and/or from
the server systems 106. More specifically, the client systems
102 and the server systems 106 may communicate over one or
more intermediate communications networks 112. These net
works 112 generally represent any protocols, adapters, com
ponents, and other general infrastructure associated with
wired and/or wireless communications networks. Such net
works 112 may be global, regional, local, and/or personal in
scope and nature, as appropriate in different implementa
tions.

In some cases, two or more of the systems (e.g., 102a and
102n) may simultaneously be in a peer-to-peer relationship
with one another, while also being in a client/server relation
ship with the server systems 106. In such instances, these
systems 102 may be characterized as peer systems, vis-a-vis
one another. As such, the client-side collaboration compo
nents may enable the peer systems 102 to exchange peer-to
peer synchronization flows 114 with one another.

Subsequent drawings and related description elaborate fur
ther on these peer-to-peer synchronization flows 114. In over
view, the client-side collaboration applications 104 may
enable the users accessing the client systems 102 to collabo
rate with other users accessing similarly-configured client
systems 102. In some cases, the client systems 102 may
communicate with one another over the network 112, or other
similar networks.

Turning to the client/peer systems 102 in more detail, the
collaboration applications 104 may implement and maintain
a shared workspace, through which the client systems 102
collaborate with one another. For example, respective users
associated with the client systems 102a and 102n may col
laborate with one another while working on a given project in
a corporate enterprise. To facilitate this cooperation between
the users, the collaboration applications 104 may maintain
local instances of the shared workspace, as denoted respec
tively at 116a and 116n (collectively, shared workspace 116).
In addition, the collaboration applications 104 may maintain
respective instances of storage elements, as denoted respec
tively at 118a and 118n (collectively, storage elements 118).

In general, the storage elements 118 may contain any data
bases, data structures, Schemas, or other data elements as
appropriate for implementing the shared workspace 116
through which the client systems collaborate. Data and/or
process flows between local instances of the shared work

10

15

25

30

35

40

45

50

55

60

65

4
spaces 116 and the local storage elements 118 are represented
at 120a and 120m, respectively on the client systems 102a and
102n.

Although the client systems 102 maintain respective local
instances of the shared workspaces 116 and storage elements
118, the peer-to-peer flows 114 enable these local instances of
the shared workspaces 116 and storage elements 118 to be
synchronized with one another. More specifically, actions
performed locally at the client system 102a may be synchro
nized over to the client system 102n, and vice versa.
Over time, the peer-to-peer synchronization flows 114

cause the shared workspaces 116a and 116n to mirror one
another, as represented by dashed line 122 in FIG. 1. Simi
larly, the peer-to-peer synchronization flows 114 also cause
the storage elements 118a and 118n to mirror one another, as
represented by a dashed line 124 and FIG. 1.

Having described the operating environments 100 in FIG.
1 for synchronization and collaboration within peer-to-peer
and client/server environments, the discussion now turns to a
more detailed description of architectural components within
the client/peer systems 102 and the server systems 106. This
description is now provided with FIG. 2.

FIG. 2 illustrates additional aspects, denoted generally at
200, of the client systems and server systems as shown in FIG.
1. For convenience of description, but not to limit possible
implementations, FIG. 2 may carry forward some elements
from previous drawings, and denote them with identical ref
erence numbers. For example, FIG. 2 carries forward an
example client system 102 that may communicate with an
example server system 106 over a network 112.

Turning to the client systems 102 in more detail, these may
include one or more processors 202, which may have a par
ticular type or architecture, chosen as appropriate for particu
lar implementations. The processors 202 may couple to one
or more bus systems 204 chosen for compatibility with the
processors 202.
The client systems 102 may also include one or more

instances of computer-readable storage media 206, which
couple to the bus systems 204. The bus systems may enable
the processors 202 to read code and/or data to and/or from the
computer-readable storage media 206. The media 206 may
represent storage elements implemented using any Suitable
technology, including but not limited to semiconductors,
magnetic materials, optics, or the like. The media 206 may
include memory components, whether classified as RAM,
ROM, flash, or other types, and may also represent hard disk
drives.
The storage media 206 may include one or more data

structures and modules of instructions that, when loaded into
the processor 202 and executed, cause the client systems 102
to perform various tools and techniques relating to synchro
nization and collaboration within peer-to-peer in client/server
environments. Examples of these modules may include a
client-side collaboration application, carried forward at 104.
The collaboration application may enable two or more of the
client systems 102 to establish and maintain the shared work
space 116. As detailed further throughout this description, the
shared workspace 116 may enable different users to collabo
ratively access and edit a variety of different shared folders,
documents, objects, and the like. For example, the storage
elements, carried forward at 118, may store or contain repre
sentations of such folders, documents, objects, and the like.

Turning now to the server systems 116 in more detail, these
server systems may include one or more processors 208,
which may have a particular type or architecture, chosen as
appropriate for particular implementations. The processors
208 in the server systems 106 may or may not have the same

US 8,010,487 B2
5

type and/or architecture as the processors 202 in the client
systems 102. The processors 208 may couple to one or more
bus systems 210 chosen for compatibility with the processors
208.
The server systems 106 may also include one or more

instances of computer-readable storage media 212, which
couple to the bus systems 210. The bus systems may enable
the processors 208 to read code and/or data to and/or from the
computer-readable storage media 212. The media 212 may
represent storage elements implemented using any suitable
technology, including but not limited to semiconductors,
magnetic materials, optics, or the like. The media 212 may
include memory components, whether classified as RAM,
ROM, flash, or other types, and may also represent hard disk
drives.
The storage media 212 may include one or more data

structures and modules of instructions that, when loaded into
the processor 208 and executed, cause the server systems 106
to perform various tools and techniques relating to synchro
nization and collaboration within peer-to-peer in client/server
environments. For example, these modules may provide one
or more instances of server-side collaboration applications,
carried forward at 108. As detailed further below, the client
side and server-side collaboration applications (104 and 106,
respectively) may cooperate to exchange the client server
synchronization flows 110 between the client systems 102
and the server systems 106.

In some cases, the server system 106 may assume the role
of a client or peer system, along with one or more of the client
systems 102. In other cases, the server system may perform
specialized functions not otherwise performed by the client
systems 102. For example, the server system 106 may provide
backup, administrative, managerial, or other services on
behalf of the client systems 102, in connection with facilitat
ing collaboration between the client systems 102, as well as
between the client systems 102 and the server systems 106.
As can be appreciated from FIGS. 1 and 2, the systems or

operating environments shown therein may facilitate both
client/server interactions and peer-to-peer interactions. The
discussion now proceeds to FIG. 3 to provide additional
description of these client/server and peer-to-peer interac
tions, as facilitated by the collaboration applications.

FIG.3 illustrates components and data flows, denoted gen
erally at 300, by which a given client system may exchange
peer-to-peer synchronization flows with any number of other
client systems, as well as participating in client/server Syn
chronization flows involving any number of server systems.
For convenience of description, but not to limit possible
implementations, FIG.3 may carry forward some elements
from previous drawings, and denote them with identical ref
erence numbers. For example, FIG. 3 carries forward an
example client-side collaboration application at 104, as con
tained within an example client or peer system 102a.

Turning to the client or peer system 102a, the collaboration
application 104a running thereon may manage and maintain
local instances of the shared workspace 116a and related
storage elements 118.a. more specifically, a user 302a asso
ciated with the client system 102a may wish to collaborate on
a given project with other users 302b and 302n, who are
associated respectively with the peer systems 102b and 102n.
Accordingly, the user 302a may issue commands to the col
laboration application 104a to issue invitations to the peer
systems 102b and 102n, thereby inviting the users 302b and
302n to collaborate with the user 302a. assuming that the user
302b and/or the user 302n accepts these invitations, the peer
system 102a may instantiate the shared workspace 116a and
storage elements 118a, while the peer systems 102b and 102n

10

15

25

30

35

40

45

50

55

60

65

6
instantiate corresponding shared workspaces and storage ele
ments (not shown in FIG. 3, but illustrated in FIG. 1).

Having established peer-to-peer synchronization relation
ships among the peer systems 102a-102n, the client-side
collaboration components 104 operating respectively on
these peer systems may synchronize changes made on any of
these peer systems. For example, if the user 302b makes a
change or revision locally at the peer system 102b, this
change may be synced to the peer system 102a, as represented
at 114a. In turn, the peer system 102a may forward this
change or revision to the peer system 102n, as represented at
114m. In general, peer-to-peer synchronization flows may
occur at any suitable direction between the peer systems
102a-102n.
Assume, for example, that the users 302a-302n (collec

tively, users 302) are collaborating on a project that involves
maintenance of an address book, contact list, or other similar
data structure (referred to collectively as the “contact list'), to
be distributed among the client systems 102a-102n. In this
example, one of the peer systems (e.g., the peer system 102a)
may download a set of data structures or other elements from
an external server system (e.g., 106a), as represented gener
ally at 110a. For example, the server system 106a may sync to
the client system 102a a schema304 for building a production
database 306 suitable for housing the address book, contact
list, or data structure collaboratively maintained and revised
by the peer systems 102a-102n. In addition, the production
database 306 may populate a set of user interface (UI) ele
ments 308, with which the users 302 may interact when
issuing commands related to accessing or revising the contact
list.
The client-side collaboration application 104a may instan

tiate one or more application logic components 310 that are
operative to access or revise a contact list, in response to user
input. The application logic components 310 may be incor
porated into tools 312, along with data within the database
306, the schema 304, and related UI elements 308. The appli
cation logic components 310 may include logic for trans
forming and validating data, as described in further detail
below. In some instances, the application logic components
310 may include descriptions of business logic (e.g.,
advanced validation, workflow behavior based on actions
taken at clients, and the like) that may transported from the
server to groups of peer systems.
Taken collectively, the production database 304, the related

schema 304, the UI elements 308, and the application logic
components 310 may operate through the workspaces 116
shared across the client systems 102. Having introduced these
items in FIG. 3, the discussion now turns to a more detailed
description of these items, now presented with FIG. 4.

FIG. 4 illustrates additional aspects, denoted generally at
400, of the production database 306, related schema 304, UI
elements 308, and tools 310 as provided by the client-side
collaboration application 104, as shown in FIG. 3. While this
discussion is presented in connection with the example
involving a contact list, it is noted that this example is pro
vided only to facilitate the present description, but not to limit
possible implementations.

Turning to the tool 312 in more detail, in the contact list
example, the tool may take the form of an application 402
through which users (e.g., 302 in FIG. 3) may manage the
contact list, represented generally at 404. The contact list 404
may include any number of individual contacts 406a and
406m (collectively, contacts 406). For example, if the contact
list 404 contains contact information for a plurality of per
Sons, different contacts 406 may represent or correspond to
individual persons.

US 8,010,487 B2
7

Individual contacts 406 may be implemented by corre
sponding record structures 408, which may contain any num
ber of fields 410a and 410i (collectively, fields 410). For
example, assuming that the contact list 404 stores names,
addresses, telephone numbers, or similar information for the
individual contacts 406, a respective record structure 408 may
be with the individual contacts 406. In turn, this record struc
ture 408 may contain individual fields 410 that store repre
sentations of the names, addresses, telephone numbers, and
the like.

Turning to the UI elements 308 in more detail, these UI
elements may define representations of views 412. These
views 412 may provide different types of representations,
depending on the nature of the underlying data. For example,
these views 412 may present lists of data elements, views of
calendar data, Gantt charts or other representations of tasks
within ongoing projects, or the like.

These views 412 may display to the users representations
of at least a portion or a Subset of the contact list 404, along
with representations of at least some of the individual con
tacts 406. For example, individual contacts may be associated
with one another by relationship, authorship, location, or
other factors. In some cases, the view may select different
records, according to which user is requesting the view, in
scenarios in which the same device may support multiple
users. In addition, the representations of the individual con
tacts may be responsive to user activation, selection, or input,
causing the UI elements 308 to present one or more forms 414
dedicated to the individual selected contact. For example, a
given form 414 may present information from the fields 410a
410i that are associated with the record 408.

In this manner, the UI elements 308 may enable users to
visualize names, addresses, telephone numbers, and the like
is associated with particular contacts 406. In addition, as
described in further detail below, the collaboration applica
tion 104 may enable the users to create new contacts 406, add
new fields 410 to contact records 408, change the contents of
existing fields, and the like.

Turning to the schema304 and the production database 306
in more detail, the schema304 may specify the data structure
or hierarchy that governs the construction of the contact list
404. For example, the schema 304 may specify the fields 410
available for inclusion within records 408 that are instantiated
for the individual contacts 406. In addition, the production
database 304 may populate the list views 412 and the forms
414 presented as part of the UI elements 308.

Referring briefly back to FIG. 3, the schema 304, the pro
duction database 306, and the tools 310 are synced from the
server system 106a to the client system 102a. However, the
client system 102a or any other client system 102 may just as
readily invoke a designer application locally on the client
system, and construct at least portions of the schema, produc
tion database, and tools. Afterwards, any of the client systems
(e.g., 102a) may sync any updated or created schemas, pro
duction databases, and/or tools to a server system 106b, as
represented generally at 110b. The server system 106b may or
may not be the same as the server 106a.

In some implementations, the tools 310 may operate in at
least two illustrative, separate modes. In a “connected mode,
design elements within the client systems are slaved to the
server, and no design changes are made at the client. In
connected mode, only data changes are made at the client. In
a “not connected mode, the clients are not connected to a
server system, and design changes can be made by any autho
rized peer member of the workspace. These design changes
are then synchronized to other peers within the workspace.

10

15

25

30

35

40

45

50

55

60

65

8
Having described the components and data flows shown in

FIG. 4, the discussion now turns to a more detailed descrip
tion of process flows related to instantiating and syncing tools
or applications. This description is now provided with FIG.5.

FIG. 5 illustrates process flows, denoted generally at 500,
related to instantiating in Syncing tools and applications. Such
as those discussed in connection with FIGS. 3 and 4. For
convenience of description, but not to limit possible imple
mentations, FIG. 5 may carry forward some elements from
previous drawings, and denote them with identical reference
numbers. For example, FIG. 5 carries forward an example
peer system at 102a, which for the purposes of this descrip
tion may perform the process flows 500.

Turning to the process flows 500 in more detail, block 502
represents instantiating a tool or application on the peer sys
tem 102a. FIG. 5 carries forward an example of such a tool or
application at 310.

Block 504 represents connecting the peer system 102a to a
server system (e.g., 102a in FIG.3). More specifically, block
504 may include connecting to the server system to download
or sync parameters relating to a design of the tool or applica
tion 312. For example, block 504 may include downloading a
schema Suitable for constructing a production database (e.g.,
306), as well as populating UI elements (e.g., 308).

Block 506 represents loading or syncing a design for the
tool or application, having connected to the server in block
504. In turn, block 508 represents instantiating a tool or
application design locally at the peer system 102a. More
specifically, block 508 may include instantiating the produc
tion database 306, UI elements 308, and tool or application
312 as shown in FIG.S.

Block 510 represents distributing the tool or application
design, as instantiated in block 508, to one or more other peer
systems. For example, assuming that the peer systems 102a
and 102n as shown in FIG. 5 are collaborating through shared
workspaces 116 (shown in previous drawings), block 510
may include syncing the instantiated tool or application
design to these other peer systems 102n.

Block 512 represents syncing changes between any num
ber of peer systems, with these changes made using the tool or
application instantiated and distributed in blocks 508 and
510. For example, FIG.5 carries forward an example of a sync
between two or more peers at 114n.

In some scenarios, block 512 may include syncing the
instantiated tool or application to one or more server systems
(e.g., carried forward at 106). FIG. 5 denotes an example
syncing to and/or from a server at 110.
FIG.5 illustrates example process flows 500 in which a tool

or application is instantiated locally at a given peer system,
based on a design synced from an external server. However, as
described above, implementations are possible in which the
tool or application is built locally at the peer system using a
design provider or designer. These latter implementations
may, for example, omit blocks 502-506.

Having described the process flows 500 and FIG. 5, the
discussion now turns to a description of process flows by
which peer systems may revise and synchronize revisions
occurring locally on the peer systems. This description is now
provided with FIG. 6.

FIG. 6 illustrates process flows, denoted generally at 600,
by which peer systems may revise and synchronize revisions
occurring locally on the various peer systems. For conve
nience of description, but not to limit possible implementa
tions, FIG.6 may carry forward some elements from previous
drawings, and denote them with identical reference numbers.
For example, FIG. 6 carries forward example peer systems at

US 8,010,487 B2
9

102a and 102n, which are assumed to be collaborating
through respective instances of a shared workspace 116.

Only for the purposes of this description, but not to limit
possible implementations, the process flows 600 are illus
trated and described in connection with the peer systems 102a
and 102n. However, implementations of this description may
perform at least portions of the process flows 600 using other
components without departing from the scope and spirit of
this description. In addition, these process flows are described
as proceeding in certain orders only for purposes of this
description, and implementations of these process flows may
proceed in different orders as well.

Turning to the process flows 600 in more detail, block 602a
represents receiving indications of one or more revisions
occurring locally at the peer system 102a. At the peer system
102n, block 602n represents receiving indications of revi
sions occurring locally at that peer system. the revisions
received in blocks 602a and 602n may, for example, made
through the UI elements 308 shown in FIGS. 3 and 4, as
facilitated by the tools or applications 310.

Referring back to the above example involving the contact
list 404 shown in FIG.4, the revisions received in blocks 602a
and 602n may include revisions made to the record structures
408 and/or to the fields 410. For example, one peer system
102a may modify the schema304 to add a new field 410 to the
record structures 408, with this new field including e-mail
addresses for the various contacts 406. Another peer system
102n may revise an existing form 414 to provide a new phone
number for a contact 406.
The revisions represented in blocks 602a and 602n may or

may not occur simultaneously. Further, these revisions may
occur while one or more of the peer systems 102a or 102n are
in off-line or online states.

Block 604a represents the peer system 102a creating a
local version on the peer in response to the revisions received
in block 602a. For example, assuming that the peer system
102a modified the schema304 to add the new field for e-mail
addresses, block 604a may include creating a new version of
the schema 304 to incorporate this new e-mail address field.

At the peer system 102n, block 604n represents creating a
version on this peer system in response to the revisions
received in block 602n. For example, assuming that the peer
system 102n provided a new phone number for one of the
contacts in a contact list, block 604m may include creating a
new version of the contact list incorporating the new phone
number.

Block 606a represents the peer system 102a syncing at
least the new version created in block 604a with one or more
other peer systems sharing the workspace 116. For example,
block 606a may represent the peer system 102a syncing the
new e-mail address field to one or more other peer systems
(e.g., 102n).

Block 606n represents the peer system 102n syncing at
least the new version created in block 604n with one or more
other peer systems sharing the workspace 116. For example,
block 606in may represent the peer system 102n syncing the
new phone number for the contact to one or more other peer
systems (e.g., 102a).

FIG. 6 carries forward at 114m a representation of peer
syncs between the peer systems 102a and 102n. As part of
these peer syncs, the process flows 600 may exchange a
version table 608 between the client systems participating in
the Sync. Continuing the ongoing example, one instance of
the version table 608 may reflect the new e-mail address field
passing from the peer system 102a to the peer system 102n.
Similarly, another instance of the version table 608 may

10

15

25

30

35

40

45

50

55

60

65

10
reflect the new phone number passing from the peer system
102n to the peer system 102a.
Block 610a represents the peer system 102a evaluating the

revisions synced-in from the peer system 102n in block 606a,
to determine whether these revisions conflict with any revi
sions performed locally on the peer system 102a. For
example, if the peer system 102n syncs a new telephone
number for a contact across to the peer system 102a, block
610a may include determining whether this new telephone
number conflicts with any information maintained locally at
the receiving peer system 102a.

Similarly, at the peer system 102n, block 610n represents
evaluating the revisions synced-in from the peer system 102a
in block 606n, to determine whether these revisions conflict
with any revisions performed locally on the peer system 102n.
For example, if the peer system 102a sinks a new e-mail
address field across to the peer system 102n, block 610n may
include determining whether this new e-mail address field
conflicts with any information maintained locally at the peer
system 102n.
From decision block 610a, if no conflict results from the

revisions synced-in from another peer system, the process
flows 600 may take No branch 612a to return to block 602a.
In block 602a, the peer system 102a may await further revi
sions arriving locally from, for example, a local user access
ing this peer system. Similarly, from decision block 610n, no
conflict results from the revisions synced-and from another
peer system, the process flows 600 may take No branch 612n,
returning to block 602n to await further revisions locally at
the peer system 102n.
The preceding discussion described scenarios in which no

conflict results from peer to peer syncs. However, in some
cases, conflicts can result when peers Sync with one another.
Returning, for example, to decision block 610a, assume that
the new telephone numbers synced-in from the peer system
102n conflicts with telephone information revised locally at
the peer system 102a in this case, the process flows 600 may
take Yes branch 614a to block 616a.

Block 616a represents selecting a winning version, as
between the conflicting versions maintained locally at the
peer system 102a and the version as Synced-in from the peer
system 102n. Any number of different algorithms or tech
niques may be employed to select this winning version, and
are not detailed further in this description. Block 616a may
also include designating or marking a winning version as
Such.

Having designated a winning version in block 616a, block
618a represents marketing other conflicting versions as such.
However, block 618a may include retaining or maintaining
these conflicting versions, rather than deleting them. For
example, block 618a may include presenting a conflict reso
lution UI to one or more users accessing the peer system 102a,
with this conflict resolution UI including representations of
the various conflicting versions, as well as designating which
version was selected as the winner the conflict. In this manner,
block 618a may enable the users to review the conflicting
versions, and correct or resolve any conflicts as appropriate.

In similar fashion, at the peer system 102n, if block 610n
determines that a conflict exists with a version as Synced-in
from the peer system 102a, the process flows 600 may take
Yes branch 614n to block 616 n. Block 616n may operate
similarly to block 616a, in selecting a winning version, with
the understanding that block 616n executes on the peer sys
tem 102n.

Block 618n represents marking and maintaining the con
flicting versions, similarly to block 618a. In general, the
description of block 618a may apply equally to block 618n.

US 8,010,487 B2
11

Having described the process flows 600 for receiving and
syncing revisions across different peer systems, as well as
resolving conflicts between those revisions, the discussion
now proceeds to a description of process flows for performing
client/server syncs. This description is now provided with
FIG. 7.

FIG. 7 illustrates process flows, denoted generally at 700,
for performing syncs between clients and servers. For conve
nience of description, but not to limit possible implementa
tions, FIG.7 may carry forward some elements from previous
drawings, and denote them with identical reference numbers.
For example, FIG. 7 carries forward an example client system
102, as well as a server system at 106. In addition, the process
flows 700 shown in FIG. 7 may be understood as providing
examples of the sync flows 110 between the client system 102
and a server system 106.

Turning to the process flows 700 in more detail, block 602
represents receiving any number of revisions locally at the
client system 102. The processing represented in block 602 in
FIG.7 may be similar to that represented in blocks 602a and
602n in FIG. 7. Thus, the description of those blocks in FIG.
6 applies equally to block 602 in FIG. 7.

Block 604 represents creating versions on the client system
102 in response to the revisions received in block 602. In
general, the processing represented in block 604 in FIG. 7
may be similar to that represented in block 604a and 604n in
FIG. 6. Thus, the description of these blocks in FIG. 6 applies
equally to block 604 in FIG. 7.

Block 702 represents syncing the version created in block
604 to one or more external server systems 106. FIG. 7
represents this client/server sync at 110, as carried forward
from FIG. 1.

At the server system 106, block 704 represents receiving
the sync from the client system 102. In turn, decision block
706 represents validating the sync received from the client
system, to determine whether it is valid in the context of the
server system 106.
From decision block 706, if the sync received from the

client system is valid on the server system 106, the process
flows 700 may take Yes branch 708 to block 710, which
represents reporting this finding to the client system 102.
More specifically, block 710 may include sending a synchro
nization report 712 to the client system, indicating the results
of the server sync 110. If decision block 706 indicates that the
data and/or items received sync are valid on the server system,
the synchronization report 712 may so indicate.

Returning to decision block 706, if the sync received from
the client system is invalid on the server system 106, the
process flows 700 may take No branch 714 to block 716.
Block 716 represents rejecting the revisions incorporated in
the sync from the client system. For example, returning to the
example in which one of the client systems 102 adds a new
e-mail field to a database schema within the workspace 116,
the server system 106 may determine that the client systems
112 lack sufficient permissions or privileges to alter the data
base schema, as stored on the server system 106. In another
example pertaining to data changes, an application running
on the server may determine that a value entered into an email
address field for a particular contact is not valid, due to special
rules or additional validation processing performed by this
server-side application. However, a client-side version of this
same application may not perform this same validation pro
cessing. In these or other example scenarios, block 716 may
reject the attempted change to the server-side database
schema.

Block 718 represents marking the rejected revisions as
invalid. However, despite having found these revisions

5

10

15

25

30

35

40

45

50

55

60

65

12
invalid, the server system 106 may maintain and retain the
rejected revisions, rather than deleting these revisions. In this
manner, the server system may avoid loss of the data changes
made by users of the client systems. The process flows 700
may then proceed to block 710, to report the rejected revisions
to the client system as part of the sync report 712.
At the client system 102, decision block 720 represents

determining whether the server system reported an error in
response to the server sync 110 initiated by the client system.
For example, the sync report 712 may indicate errors arising
on the server system. If the server system 106 did not reportan
error, the process flows 700 may take No branch 722 to return
to block 602, and await further revisions at the client system
102.

Returning to decision block 720, if the server system 106
reported an error with the server sync 110, the process flows
700 may take Yes branch 724 to block 726, which represents
marking the versions synced in block 702 as rejected by the
server system. However, block 726 may include retaining or
maintaining the rejected versions, rather than deleting them.

Block 728 represents reporting any error conditions to the
client system 102, as well as any peer systems that are oper
ating within a shared workspace with the client system 102. In
this manner, the process flows 700 may enable appropriate
ones of these peer systems to address or remediate any issues
with the revisions that caused the server system rejecting the
server sync 110.
Having described the process flows 600 and 700 in FIGS.

6 and 7, several observations are noted. First, FIG. 6 illus
trates conflicts arising between peer systems 102, as well as
managing and resolving those conflicts within the peer sys
tems. Second, the scenario shown in FIG. 7, in which the
server system 106 rejects syncs from the client systems may
be referred to as “refuse errors'. These refuse errors may be
viewed as a type of conflict that arises between the server
system 106 and any client systems 102. Generally, when
conflicts arise between the server systems and client systems,
the server systems may “win” these conflicts. However, the
process flows 600 and 700 manage these different types of
conflicts using similar mechanisms: by not only selecting a
“winner of the conflict in some manner, but also by preserv
ing or maintaining the “losers' of the conflict. In this manner,
the process flows at 600 and 700 enable further processing
and resolution directed to the conflicting items that are not
chosen as winners. These process flows 600 and 700 may also
facilitate conversions between HTML and rich text, and the
like.

Although the server systems and client systems may
employ similar mechanisms to resolve conflicts, it is noted
that the server systems may not be aware of all conflicts
occurring among client systems that are operating as peers.
For example, a given revision made by one peer may be
rejected by the other peers for any number of reasons, and the
client systems may not sync such rejected revisions to the
server systems. This scenario provides an example illustrat
ing a more general principle, under which the client systems
and the server Systems may maintain distinct models of the
data structures they are synchronizing.

Having described the process flows 700 for managing con
flict between systems and server systems, the discussion now
turns to a description of data storage architectures and related
process flows for syncing data from server systems to client
systems. This description is now provided with FIG. 8.

FIG. 8 illustrates data storage architectures and related
process flows, denoted generally at 800, for syncing data from
server systems to client systems. For convenience of descrip
tion, but not to limit possible implementations, FIG.8 may

US 8,010,487 B2
13

carry forward Some elements from previous drawings, and
denote them with identical reference numbers. For example,
FIG. 8 carries forward examples of client systems at 102a and
102n (collectively, client systems 102), as well as an example
server system at 106.

Turning to FIG. 8 in more detail, the server system 106 may
manage one or more server-side databases 802, which may be
responsive to run-time queries from various client systems
102 to provide list views to those client systems. In some
cases, the server-side databases 802 and its related adminis
tration Software may not be particularly optimized for run
time performance. For example, as incoming queries arrive
from the client systems (e.g., 102a), the server-side database
802 may gather data stored in a variety of different locations
within the database to satisfy these queries. FIG. 8 provides
two examples of such data as data subsets 804a and 804p
(collectively, data subsets 804). Gathering this data from a
variety of different locations consumes overhead on the
server system 106, and typically this overhead is repeated for
various queries arrive from client systems 102.

Turning to the client systems 102, a client-side collabora
tion application 104 may receive syncs from the server sys
tem 106, with FIG. 8 carrying forward an example client
server sync at 110. The incoming server sync 110 shown in
FIG.8 may, in some cases, result from queries directed from
the client systems 102 to the server systems 106. More spe
cifically, the data contained within the incoming sync 110
may contain at least the data subsets 804 were gathered from
various locations within the server-side database 802.
As data arrives on the wire from server systems 106 at

various client systems 102 (e.g., 102a), the client systems
may initiate instances of the processflows 800. In some cases,
these process flows may improve processing of this incoming
data within a plurality of client systems 102a and 102n that
are collaborating through a shared workspace, carried for
ward at 116.

Turning to these process flows and more detail, block 806
represents receiving the incoming sync 110, from the server
system 106, at a given client system 102a. In turn, block 808
represents deconstructing or decomposing data contained
within the incoming sync 110. For example, assuming that the
incoming sync contains various data subsets 804, block 808
on the client system may include identifying and separating
these various data subsets 804a and 804.p. In a relatively
simplified example, one data Subset 804a may represent a
string value transmitted to the client systems, while the data
Subsets 804p may represent a numeric value (e.g., integer,
float, etc.) transmitted to the client systems. In Such a case,
block 808 may separate and identifies the string value from
the numeric value, as concatenated and transmitted together
within the incoming sync 110.

In another example, particular data types may represent a
“user'. The on-the-wire communication received at the client
system may represent the “user data type as, for example, the
string “123;ijohnsmith(a)company.com'. Within this
example string, the numeric prefix may provide an index into
a table of users, and the text portion may provide an email
address. For convenience on the client side, the client systems
may decompose this data type into the following separate
fields: the numeric index value as received from the server, the
email address, the textual name to be displayed for this user
(which may be obtained by a local dereferencing to a client
side copy of the user table), and the like.

Block 810 represents defining one or more strongly-typed,
multi-representative data types, which facilitate deconstruct
ing the incoming data from the server Systems 106 for more
efficient storage and processing within the client systems 102.

10

15

25

30

35

40

45

50

55

60

65

14
Returning to the string-numeric example introduced with
block 808, the multi-representative data type may facilitate
storing and indexing the string and numeric portions sepa
rately. In this scenario, the String and numeric portions may be
searched separately, with searches for the strings being opti
mized separately from any optimizations applied to searching
the numeric portions.

In addition to facilitating search, the multi-representative
data types may enable indexing within list views. For
example, returning to the “user data type example above, the
various fields into which incoming data types are decom
posed may be sorted and displayed in order in a list view.

It is also noted that the data transformations described in
these examples may be bidirectional. For example, when
decomposing the data types incoming from the server into
fragments, these fragments may be synchronized across any
number of client systems that have peer relationships with
one another. If the clients/peers make changes to these frag
ments, these changes may be synced not only to other peers,
but also to one or more server systems. However, before
syncing the changes to the servers, the clients/peers may
reassemble these changed fragments back into the data types
compatible with the server.

Block 812 represents storing the multi-representative data
type defined in block 810. More specifically, block 812 may
include associating the multi-representative data type with a
given shared workspace 116 through which client system
102a and 102n collaborate. In some cases, client-side storage
elements (carried forward at 118) may store the multi-repre
sentative data types on behalf of the client systems 102
accessing the shared workspace 116.

In this manner, once one of the client systems 102 has
queried for particular data subsets 804 from the server system
106, those data subsets may be stored and indexed on the
client side within storage elements 118. Thus, any Subsequent
queries for those same data subsets 804 may be satisfied from
the client-side storage 118, rather than directing queries all
the way to the server system 106. The client-side storage 118
may be optimized for a particular processing performed
through the shared workspace 116. Subsequent queries may
be satisfied more efficiently from this optimized client-side
storage, as compared to running the same queries on the
server system 106. More specifically, result from these que
ries may be compiled and displayed faster at run-time within
the workspace 116, as compared to the server system 106.

Having described the architectures and process flows 800
in FIG. 8, several observations are noted. In some cases, the
data types handled within the shared, peer-to-peer workspace
(e.g., 116) may be different than the data types handled within
the central server 106. Some of these data types may not
easily transition between the peer-to-peer workspace and the
centralized server. However, the multi-representative data
types described in FIG.8 may facilitate these transitions, by
facilitating conversions of string variables received from the
server system 106 into different representations as appropri
ate for the peer-to-peer workspace 116, and vice versa. The
multi-representative data types may also facilitate mapping,
aliasing, and referencing capabilities within the shared work
space, as well as indexing, collating, and search-related func
tions.

In addition, the architectures and process flows 800 may
enable the client systems to avoid collisions between names
used on the server and names used within the workspace. For
example, where database implementations within the client
systems have internally reserved field names for its own pur
poses (e.g. "CreatedBy’), the server systems may have a
different field with the same name, resulting in a name con

US 8,010,487 B2
15

flict or collision. In Such scenarios, the multi-representative
data types may translate between the client and server sys
tems, so as to decouple local naming on the client from
external naming on the server, yet translate from the naming
on the client to the naming on the server (and vice versa), as
appropriate.

Having described the architectures and process flows 800
in FIG. 8, the discussion now proceeds to a description of
process flows related to updating application designs in
response to design changes synced in from server systems.
This description is now provided with FIG. 9.

FIG. 9 illustrates process flows, denoted generally at 900,
related to updating application designs on the client systems,
in response to design changes synced in from server systems.
For convenience of description, but not to limit possible
implementations, FIG.9 may carry forward some elements
from previous drawings, and denote them with identical ref
erence numbers. For example, FIG. 9 carries forward
examples of client systems at 102, as well as an example
server system at 106. Although the process flows 900 are
described in connection with these client and server systems,
it is noted that implementations of these process flows may be
performed on other components, without departing from the
Scope and spirit of this description.

Turning to the process flows 900 in more detail, block 902
represents the client system 102 receiving a sync from the
server system 106. More specifically, block 902 may include
receiving a sync 904 from the server that updates a schema
used to populate a production database maintained by the
client system 102. FIG.9 carries forward an example produc
tion database at 306, an example schema304, and an example
tool or application 312, which is instantiated from the pro
duction database.

Block 906 represents comparing the schema as received in
the sync 904 to the production schema 304 currently used to
instantiate the production database 306. In turn, block 908
may include identifying any differences between the current
production schema 304 and the schema represented by the
incoming sync 904.

Block 910 represents creating a clone of the current pro
duction database to be used for validating the incoming
schema changes, as well as loading the clone database with
the current schema. FIG. 9 provides an example of the clone
database at 912, and represents loading the current schema
into this database at 914.

Block 916 represents incorporating the updated schema
into the clone database 912, thereby updating the clone data
base with the updated schema as received from the server
system. FIG. 9 represents the updated schema or schema
changes at 918, as copied to the clone database 912. In this
manner, block 916 may take the current schema 914 as a
starting point, and then update the schema with the schema
changes 918 arriving from the server system 106.

Block 920 represents validating the updated schema in the
clone database. In general, block 920 may include instantiat
ing or building a tool or application within the clone database,
and evaluating the results. In turn, decision block 922 repre
sents determining whether the updated Schema was validated
within the clone database. If the updated schema was valid
within the clone database, the process flows 900 may take Yes
branch 924 to block 926, which represents merging the
schema changes into the production database 306 on the
client system 102. FIG. 9 represents these merged schema
updates at 928.

Block 930 represents propagating the schema changes and/
or the updated production database to other client systems
collaborating within a given shared workspace (e.g., 116 in

10

15

25

30

35

40

45

50

55

60

65

16
previous drawings). In this manner, all client systems 102
collaborating within the shared workspace may operate from
a common production database 306.

Returning to decision block 922, if the updated schema was
not valid within the clone database, the process flows 900 may
take No branch932 to return to block 902. The process flows
may remain in block 902, awaiting receipt of the next schema
sync from the server system 106. In effect, taking No branch
932 enables the process flows 900 to not assimilate any
invalid schema syncs into the production database 306.

Having described the process flows 900 in FIG.9, several
observations are now noted. The process flows 900 may pro
vide the client systems 102 with a dynamic reconfiguration
capability, by which the client systems 102 may update pro
duction databases (as well as related UI elements, tools or
applications, and other elements) in response to schema
changes synced-in from the server systems. In addition, this
dynamic reconfiguration capability may validate schema
changes within a temporary or clone database, before com
mitting schema changes to the live production database.

Although the subject matter presented herein has been
described in language specific to computer structural fea
tures, methodological acts, and computer readable media, it is
to be understood that the invention defined in the appended
claims is not necessarily limited to the specific features, acts,
or media described herein. Rather, the specific features, acts
and mediums are disclosed as example forms of implement
ing the claims.

In addition, certain process and data flows are represented
herein as unidirectional only for the purposes of facilitating
this description. However, these unidirectional representa
tions do not exclude or disclaim implementations that incor
porate bidirectional flows.
The subject matter described above is provided by way of

illustration only and should not be construed as limiting.
Various modifications and changes may be made to the Sub
ject matter described herein without following the example
embodiments and applications illustrated and described, and
without departing from the true spirit and scope of the present
invention, which is set forth in the following claims.

What is claimed is:
1. A computer-readable storage medium having computer

executable instructions stored thereon which, when executed
by a client system operable with a server system, cause the
client system to perform a method comprising:

providing a production database on the client system,
wherein the production database is for instantiating an
application related to a workspace shared between the
client system and an other client system, wherein the
production database is associated with a current schema:

receiving a synchronization flow from the server system,
wherein the synchronization flow includes at least infor
mation representing a second schema:

comparing the current schema to the second schema, as
received from the server system;
creating a clone of the production database thereby

forming a clone database;
loading the current schema into the clone database;
incorporating the second schema into the clone data

base; and
evaluating whether the clone database is valid, as

updated with the second schema.
2. The storage medium of claim 1, further comprising

instructions for merging the second schema into the produc
tion database forming a merged production database, in
response to determining that the clone database is valid.

US 8,010,487 B2
17

3. The storage medium of claim 2, further comprising
instructions for propagating the merged production database
to the other client system.

4. The storage medium of claim 1, wherein the current
schema is a production schema that is currently used to
instantiate the production database.

5. The storage medium of claim 1, further comprising
instructions for identifying at least one difference between the
current schema and the second schema.

6. The storage medium of claim 1, further comprising
instructions for notassimilating the synchronization flow into
the production database, in response to determining that the
clone database is not valid.

7. The storage medium of claim 6, further comprising
instructions for awaiting receipt of another synchronization
flow, in response to determining that the clone database is not
valid.

8. A computer-implemented method comprising perform
ing computer-implemented operations for:

providing a production database on a client system,
wherein the production database is for instantiating an
application related to a workspace shared between the
client system and an other client system, wherein the
production database is associated with a current schema:

receiving a synchronization flow from a server system,
wherein the synchronization flow includes at least infor
mation representing a second schema:

comparing the current schema to the second schema, as
received from the server system;

creating a clone of the production database thereby form
ing a clone database;

loading the current schema into the clone database;
incorporating the second schema into the clone database:

and
evaluating whether the clone database is valid, as updated

with the second schema.
9. The computer-implemented method of claim 8, further

comprising merging the second schema into the production
database forming a merged production database, in response
to determining that the clone database is valid.

10. The computer-implemented method of claim 9, further
comprising propagating the merged production database to
the other client system.

11. The computer-implemented method of claim 8,
wherein the current schema is a production schema that is
currently used to instantiate the production database.

12. The computer-implemented method of claim8, further
comprising identifying at least one difference between the
current schema and the second schema.

13. The computer-implemented method of claim8, further
comprising not assimilating the synchronization flow into the
production database, in response to determining that the clone
database is not valid.

14. The computer-implemented method of claim 13, fur
ther comprising awaiting receipt of another synchronization
flow, in response to determining that the clone database is not
valid.

10

15

25

30

35

40

45

50

55

18
15. A client system comprising:
a processor; and
a computer-readable storage medium operably connected

to the processor, the computer-readable storage medium
having computer-executable instructions stored thereon
which, when executed by the processor, cause the pro
CeSSOr to:

provide a production database, wherein the production
database is for instantiating an application related to a
workspace shared between the client system and an
other client system, wherein the production database
is associated with a current schema:

receive a synchronization flow from a server system,
wherein the synchronization flow includes at least
information representing a second Schema:

compare the current schema to the second schema, as
received from the server system;

create a clone of the production database thereby form
ing a clone database;

load the current schema into the clone database;
incorporate the second schema into the clone database;
and

evaluate whether the clone database is valid, as updated
with the second schema.

16. The client system of claim 15, wherein the computer
readable storage medium has further computer-executable
instructions stored thereon which, when executed by the pro
cessor, cause the processor to merge the second schema into
the production database forming a merged production data
base, in response to determining that the clone database is
valid.

17. The client system of claim 16, wherein the computer
readable storage medium has further computer-executable
instructions stored thereon which, when executed by the pro
cessor, cause the processor to propagate the merged produc
tion database to the other client system.

18. The client system of claim 15, wherein the computer
readable storage medium has further computer-executable
instructions stored thereon which, when executed by the pro
cessor, cause the processor to identify at least one difference
between the current schema and the second schema.

19. The client system of claim 15, wherein the computer
readable storage medium has further computer-executable
instructions stored thereon which, when executed by the pro
cessor, cause the processor to not assimilate the synchroniza
tion flow into the production database, in response to deter
mining that the clone database is not valid.

20. The client system of claim 19, wherein the computer
readable storage medium has further computer-executable
instructions stored thereon which, when executed by the pro
cessor, cause the processor to await receipt of another syn
chronization flow, in response to determining that the clone
database is not valid.

