
(12) United States Patent
Pyle

USOO9684526B2

US 9,684,526 B2
Jun. 20, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

TECHNIQUES FOR CONFIGURING A
GENERC PROGRAMUSING CONTROLS

Applicant: Ab Initio Software LLC, Lexington,
MA (US)

Inventor: Hugh F. Pyle, Salem, MA (US)

Assignee: Ab Initio Technology LLC, Lexington,
MA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/714,037

Filed: May 15, 2015

Prior Publication Data

US 2016/03351OO A1 Nov. 17, 2016

Int. C.
G06F 3/048 (2013.01)
G06F 9/445 (2006.01)
G06F 7/24 (2006.01)
G06T II/20 (2006.01)
G06F 3/0484 (2013.01)
G06F 3/0482 (2013.01)
G06F 9/44 (2006.01)
U.S. C.
CPC G06F 9/44505 (2013.01); G06F 3/0482

(2013.01); G06F 3/04842 (2013.01); G06F
3/04847 (2013.01); G06F 8/38 (2013.01);

G06F 17/248 (2013.01); G06T II/206
(2013.01)

Field of Classification Search
CPC G06F 7/78; G06F 8/008/78; G06F

9/44. 9/455; G06F 11/36
See application file for complete search history.

a.

(56) References Cited

U.S. PATENT DOCUMENTS

6,292, 187 B1 * 9/2001 Gibbs HO4N 5/44513
348/E5.006

7,296,194 B1 * 1 1/2007 Lovy GO6F 11.0709
TO9,224

2002/0174420 A1 11/2002 Kumar

(Continued)

OTHER PUBLICATIONS

Rauf et al., Automated GUI Test Coverage Analysis using GA,
2010.*

(Continued)

Primary Examiner — H. S. Sough
Assistant Examiner — Zhan Chen
(74) Attorney, Agent, or Firm — Wolf, Greenfield &
Sacks, P.C.

(57) ABSTRACT
According to Some aspects, a method of operating a data
processing system is provided wherein at least one computer
program is configured, the data processing system compris
ing least a first control, a second control and a third control,
the first, second and third controls comprising at least user
interface portions and operational portions, the method
comprising rendering a first user interface based on the user
interface portion of the first control, receiving first user input
through the first user interface, the first user input providing
configuration information for the at least one program,
identifying the second control based at least in part on the
operational portion of the first control, rendering a second
user interface based on the user interface portion of the
identified second control, and receiving second user input
through the second user interface, the second user input
providing configuration information for the at least one
program.

23 Claims, 7 Drawing Sheets

N v Y

60
-r Configure Generic Program sa

1 tusing user interface sa
Befined by Tenniate N

A 68
f Execute 3eeic

rograf as
Configured

Defineerplate so
Generic Prograin

US 9,684,526 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2007/0234274 A1 10, 2007 ROSS et al.
2009/0225082 A1* 9/2009 Hargrove GO6T11 206

345,440
2010.0064229 A1 3/2010 Lau GO6F 17,308.93

715,744
2013,0247006 A1 9/2013 Trowbridge
2014/0365020 A1 12/2014 Brusilovsky
2015/0106303 A1* 4/2015 Abadi GO6N 5/02

TO6/11

OTHER PUBLICATIONS

Ganov et al., Test Generation for Graphic User Interfaces Based on
Symbolic Execution, 2008.*
PCT/US2016/032439, Jul. 22, 2016, International Search Report
and Written Opinion.
International Search Report and Written Opinion for Application
No. PCT/US2016/032439, mailed Jul 22, 2016.

* cited by examiner

US 9,684,526 B2 U.S. Patent

US 9,684,526 B2 U.S. Patent

~ 00z

U.S. Patent

3.
Configliation

Contra:

Jun. 20, 2017

Coinfigratic
Contro

Configratio:
otg

32 - Cotfigration Wizard ser interface

-3.3

33
Rreserted Configuration Cotro:

Sheet 3 of 7

Configuation
Coitio

Configuration
itro

38
Configuration

Contro:

US 9,684,526 B2

FG. 3A

FG. 3B

US 9,684,526 B2 Sheet 4 of 7 Jun. 20, 2017 U.S. Patent

US 9,684,526 B2 U.S. Patent

US 9,684,526 B2 U.S. Patent

xas.seaexasasasaesaesasase {}{}9

US 9,684,526 B2
1.

TECHNIQUES FOR CONFIGURING A
GENERIC PROGRAMUSING CONTROLS

BACKGROUND

An executable program, Such as a dataflow graph, may
include one or more parameters that configure aspects of the
execution of the program. For example, a program that reads
a data file may include a parameter for which a value may
be supplied to indicate a location where the data file is
stored. Before the program is executed, a value for the
parameter may be supplied Such that a specified location is
accessed to read the data file. The same program may be
executed again while reading a different data file by a user
Supplying a different value of the parameter when executing
the program a second time.
Some executable programs may be written to generically

specify a task and then configured by "parameterizing to
perform the task for a given scenario. “Parameterizing the
program entails Supplying values for parameters to the
program that correspond to the scenario. Such a program is
Sometimes referred to as a “generic program.” For example,
a generic program for sorting a data file may be parameter
ized by an input file location, an output file location, a record
format for the data and a sort key. By Supplying Suitable
values for these parameters, the generic program may be
executed in any instance in which sorting data and saving the
results to a file is desired.
A generic program may be parameterized by use of a user

interface that allows a user to specify appropriate values for
parameters of the generic program. In some cases, a user
who parameterizes the generic program may be different
from a user who writes the generic program. For example,
the creation of a generic program may require a higher level
of technical skill than selection of parameters to execute the
generic program.

SUMMARY

According to some aspects, a method of operating a data
processing system is provided, wherein at least one com
puter program is configured via a user interface defined at
least in part according to a configuration template, the data
processing system comprising execution time data and at
least a first configuration control, a second configuration
control and a third configuration control, the first, second
and third configuration controls comprising at least user
interface portions and operational portions, the method
comprising rendering a first user interface based on the user
interface portion of the first configuration control, receiving
first user input through the first user interface, the first user
input providing configuration information for an instance of
the at least one program, identifying the second configura
tion control based at least in part on evaluating at least part
of the operational portion of the first configuration control,
said evaluation being based at least in part on the execution
time data, rendering a second user interface based on the
user interface portion of the identified second configuration
control, and receiving second user input through the second
user interface, the second user input providing configuration
information for the instance of the at least one program.

According to some aspects, a method of defining an
interface for configuring at least one computer program is
provided, comprising with a computing system, and based at
least in part on user input, associating a first configuration
control with the interface, the first configuration control
comprising at least an operational portion and a user inter

10

15

25

30

35

40

45

50

55

60

65

2
face portion that defines a first user interface, the first
configuration control configured to define configuration
information for the at least one program based at least in part
on user input received through the first user interface,
associating a second configuration control with the interface,
the second configuration control comprising at least an
operational portion and a user interface portion that defines
a second user interface, the second configuration control
configured to define configuration information for the at
least one program based at least in part on user input
received through the second user interface, and recording
data that, based at least in part upon execution time data,
defines at least one instance in which the user input received
through the first user interface is to cause rendering of the
second user interface.

According to Some aspects, at least one computer read
able medium is provided comprising instructions that, when
executed, cause a computer to perform a method of config
uring a computer program, the method comprising recording
the program based on information received through a first
user interface, the program accepting one or more configu
ration parameters, recording a specification for a user inter
face for configuring the program based on information
received through a second user interface by selecting a
plurality of configuration controls, each configuration con
trol comprising a user interface element, recording a map
ping between the user interface elements of the selected
configuration controls and configuration parameters of the
one or more configuration parameters, and recording a
conditional order of rendering of the user interface elements
of at least a portion of the plurality of configuration controls,
and configuring the program using a configuration user
interface by rendering a user interface element in the con
figuration user interface associated with a first of the plu
rality of configuration controls, receiving user input via the
user interface element of the first configuration control, and
storing a value of at least one configuration parameter based
at least in part on the user input and the mapping, and
modifying the configuration user interface based on a user
interface element of a second configuration control of the
plurality of configuration controls, the second configuration
control being selected based at least in part on the user input.
The foregoing is a non-limiting Summary of the invention,

which is defined by the attached claims.

BRIEF DESCRIPTION OF DRAWINGS

Various aspects and embodiments will be described with
reference to the following figures. It should be appreciated
that the figures are not necessarily drawn to Scale. In the
drawings, each identical or nearly identical component that
is illustrated in various figures is represented by a like
numeral. For purposes of clarity, not every component may
be labeled in every drawing.

FIG. 1 depicts an illustrative process for configuring a
generic program using one or more configuration controls,
according to some embodiments;

FIG. 2 depicts illustrative components of a configuration
control, according to some embodiments;

FIGS. 3A-B depict an illustrative use of configuration
controls in a sequence, conditionally selected, according to
Some embodiments;

FIG. 4 is a functional block diagram illustrating configu
ration of a dataflow graph, according to some embodiments;

FIG.5 depicts configuration controls and generic dataflow
graphs stored in a metadata repository, according to some
embodiments;

US 9,684,526 B2
3

FIG. 6 depicts an illustrative development process for
users to configure a generic program according to techniques
described herein; and

FIG. 7 illustrates an example of a computing system
environment on which aspects of the invention may be
implemented.

DETAILED DESCRIPTION

The inventors have recognized and appreciated that the
efficiency of data processing systems, and other systems that
are controlled by complex programs, may be improved by
techniques to simplify the parameterization of those com
plex programs. Such efficiency may be achieved by tech
niques that enable different people, with different skill sets,
to provide different types of inputs at different times. A
skilled programmer, for example, may define interactions
between a computerized system that will execute the pro
gram and one or more data stores. These interactions may be
captured as a generic program. To make the generic program
fully useful within an enterprise, another user familiar with
requirements of the business, such as a business analyst,
may specify values of parameters used in execution of the
program. For example, the business analyst may specify
values of parameters such as which data source(s) are
accessed, which fields within a data source are accessed,
how to sort data accessed from the data source, and/or one
or more transformations to be performed with respect to the
data.

However, a business analyst may lack detailed knowledge
of programming that would otherwise enable the business
analyst to write the program to implement the desired
business logic. Accordingly, in Some scenarios, a program
mer may write the program in a generic way, so that it can
work in any of multiple scenarios. That program may have
multiple configuration parameters such that, when values are
specified for the configuration parameters, the program
otherwise executes to perform operations customized for a
particular scenario. For example, the appropriate data source
may be accessed based on a value of a parameter specifying
the data source location.
A business analyst, or other user of the program, may

specify values of the configuration parameters for a given
scenario. Such as by accessing a suitable user interface. In
this way, a business analyst, or other person who may not be
familiar with programming, can configure the program for a
specific business scenario. In some embodiments, a template
for the program may be defined to enable a business analyst
to easily enter values of configuration parameters. The
template may be created by a programmer familiar with the
details of the generic program and may supply a mapping
between values input by a user (e.g., the business analyst)
and parameters of the program. To aid a business analyst in
inputting values to control the program in a desired way, the
template may contain information indicating what each
parameter controls such that the business analyst does not
require detailed knowledge of operation of the program to
provide values of the parameters that configure the program
to perform desired functions. These aspects and/or other
aspects of the template may be presented to the business
analyst via a user interface, which may at least in part be
defined by the template.

To simplify the generation of a template and to provide a
more intuitive interface through which the analyst may
provide values of configuration parameters, the template
may dynamically generate aspects of the interface that are
presented to the analyst based on separately defined con

10

15

25

30

35

40

45

50

55

60

65

4
figuration controls. The configuration controls may be
defined by the programmer, for example. Alternatively, the
set of configuration controls may include predefined and/or
custom controls. In some embodiments, for example, the
template may dynamically present user interface elements to
the user. Each user interface element may be associated with
a configuration control that associates one or more values
input by a user through the interface with configuration
parameters of a program. In some embodiments, a set of
configuration controls may consist of predefined controls
Such that the “template' that organizes user input to con
figure the program may be generated by selecting the set of
predefined controls.
As used herein, configuration controls may refer to a set

of instructions or other information that, when invoked,
controls execution of a computer. These configuration con
trols may be programmed without relying on information
about the programs that they may be used to configure.
These configuration controls may be reusable such that
different templates, which may define different configuration
processes for different generic programs, may make use of
the same controls in the different scenarios. Particular con
figuration activities may be frequently performed (e.g.,
selecting a file) and accordingly "common configuration
controls (or simply “common controls) may be defined
Such that they may be used in any suitable scenario in which
the associated configuration activity is to be performed. In
this way, common controls may modularize the definition of
at least part of a configuration process defined by a template.

According to Some embodiments, configuration data may
be used in conjunction with configuration controls to enable
configuration of a generic program despite complexities that
may arise from using configuration controls to configure a
generic program. For example, the range of values that are
appropriate for one parameter of a generic program may
depend on the value specified for one or more other param
eters of the program. Likewise, the parameters for which
values are required to configure the program may depend on
values specified for other parameters. For example, a generic
program may read a data file and then perform an action
using the data. A generic program may be configured to
parameterize the data file location, but using a fixed set of
parameters relating to other aspects of the data file. Such as
a record format for a flat file, a schema for an XML
document, etc. may limit how the program can be configured
for execution. Providing a parameter for specifying a record
format, for example, may be necessary when the data file is
a flat file, but irrelevant or even incorrect when the data file
is an XML document. As another example, specifying a data
source that has three fields per record may result in a
different range of possible values for a parameter that
specifies a field on which to operate than if the value for the
parameter specifying the data source indicates a data source
with ten data fields. Alternatively, if the value of a parameter
indicates that the program should bypass a portion of a
program that compares a result to stored data, there may be
no reason to Solicit user input specifying a source of stored
data.

Accordingly, in conjunction with specifying a set of
configuration controls to be used in generating a user
interface though which values of configuration parameters
are obtained, configuration data may be recorded. This
configuration data may indicate things such as which con
figuration controls are used to request values of input
parameters and/or the order in which those configuration
controls are used to request values of input parameters, may
be specified. This order of execution may be conditional, and

US 9,684,526 B2
5

may be based on inputs received from the user, Such as
values of configuration parameters previously received
through other configuration controls. Likewise, the user
interface elements may be configured based on values
previously received.

According to some embodiments, a configuration control
may evaluate one or more parameters, variables, arguments
and/or execute one or more programs based on execution
time data. A data processing system presenting the configu
ration control to a user may include data defined at execution
time (e.g., by environment parameters, data file(s) and/or
executable program(s)), and the configuration control may
be configured to evaluate one or more parameters, variables,
arguments and/or execute one or more programs based on
Such execution time data. Each configuration control may
have its own Scope Such that a named parameter evaluated
within one instance of a configuration control may evaluate
to a different result than the same named parameter when
evaluated in another instance of the same configuration
control. For example, a configuration control may include a
configuration parameter whose value is expressed as a
function of an environment variable. When the configuration
control evaluates the configuration parameter, it determines
the current value of the environment variable and evaluates
the configuration parameter accordingly. If the same con
figuration control is Subsequently used in a different part of
the same configuration process (i.e., in configuring the same
instance of the same generic program), the configuration
parameter in each case may be evaluated within its own
scope and may therefore evaluate to a different value in each
case. A configuration parameter may be expressed as a
function of other parameters within the same configuration
control, and/or of other parameters within a configuration
template.

Accordingly, aspects of the technology described herein
relate to the use of configuration controls that may be
combined to produce a configuration interface. The inven
tors have recognized that a dynamic interface for configur
ing a generic program may be efficiently provided by
building the interface using configuration controls that may
provide interface elements in addition to operational logic.
The operational logic may include static or dynamic (e.g.,
executable) code that, when evaluated, may determine how
to present and/or adapt the configuration interface. Those
adaptations may involve, for example, initializing and/or
updating a user interface presented by the configuration
interface. Alternatively or additionally, those adaptations
may include other tasks Such as validating input provided by
a user to the configuration interface.

Furthermore, values input by a user to a configuration
control may be mapped to appropriate parameters of the
generic program based on the context provided by the
control. Such a mapping may be specified by an “adapter”
that links values collected through a user interface element
of a configuration control to specific parameters of a generic
program. As discussed above, “common configuration con
trols may represent reusable interface components that have
broad applicability to a range of program configuration
tasks, and an adapter may support Such use. However, there
is no requirement that the configuration controls all be
generic or reusable, as some embodiments may utilize
configuration controls that perform fixed functionality.
As an illustrative example, an interface to configure a

generic program may be generated with a configuration
control associated with a user interface element that pro
vides a file selection interface. Additional configuration
controls may be available that provide interfaces for tasks

10

15

25

30

35

40

45

50

55

60

65

6
associated with selecting a file, such as the selection of a
record format and for the selection of an XML schema for
the selected file. A user may select a file using the user
interface element of the first configuration control, which
then executes logic based on the user input to determine the
type of file that was selected. Based on the type of file, one
of the additional configuration controls may be selected and
then presented so that a user may provide further configu
ration information according to the file type (e.g., selecting
the record format in the case of a flat file or selecting an
XML schema in the case of an XML document). In this way,
the generic program may be configured using a dynamically
chosen set of parameter values, which provides greater
flexibility in how a generic program may be configured by
a U.S.

According to Some embodiments, a configuration control
may specify, at least in part, a Subsequent configuration
control to present within a user interface. For instance, in the
above example, the file selection configuration control may
identify a configuration control presented to a user to select
a record format. The initial configuration control may, for
example, execute logic (or cause logic to be executed) that
identifies the Subsequent configuration control to be pre
sented. This identification of a configuration control based
on dynamically determined conditions may be done in any
Suitable way, Such as by accessing a lookup file, executing
a program, etc., such that the Subsequent configuration
control is identified.

In some embodiments, a “wizard' may be provided in
conjunction with a program. The wizard may be a program
that generates a user interface by selecting a sequence of
configuration controls. The wizard may successively present
on a display, or other user interface mechanism, pages
defined, at least in part, by selected configuration controls.
The wizard may be encoded with or may access configura
tion data from which the wizard, when executed, may
dynamically determine an order of execution of selected
controls. The order of the pages may be selected prior to
presentation to a user and/or may be dynamically selected
based on user input or other events that may occur during
presentation of the sequence. For example, the order of the
pages may depend on values received through the user
interface. Likewise, the user interface element may be
customized based on values received. According to some
embodiments, a configuration control may be selected based
at least in part on logic executed by a wizard and on input
provided to a configuration control being presented by the
wizard. For instance, a wizard may provide navigational
elements in a user interface (e.g., in the form of directional
buttons) that, when activated by a user, execute logic that
identifies a configuration control based on the activated
navigational element and on input provided to a configura
tion control being presented by the wizard. This may, for
example, allow a wizard to Successively present configura
tion controls that are chosen based on logic executed by
previously presented configuration controls. The wizard
may include any number of configuration controls and/or
any number of other controls defined by the wizard.

According to some embodiments, a wizard may present a
configuration interface based on any number of configura
tion controls and/or any number of other controls defined by
the wizard. For instance, a wizard may present a portion of
a user interface defined by a configuration control and
additional user interface elements that provide on the con
figuration interface navigational elements that, when acti
vated by a user, enable the user to step forward and/or
backward though a sequence of pages presented by the

US 9,684,526 B2
7

wizard. These navigational elements may be presented by
the wizard distinct from the presentation of elements from a
configuration control. Further, a user may interact with Such
presented elements (e.g., navigational elements) to perform
additional functions other than those provided by a pre
sented configuration control.

Following below are more detailed descriptions of various
concepts related to, and embodiments of configuring a
generic program using dynamically selected configuration
controls. It should be appreciated that various aspects
described herein may be implemented in any of numerous
ways. Examples of specific implementations are provided
herein for illustrative purposes only. In addition, the various
aspects described in the embodiments below may be used
alone or in any combination, and are not limited to the
combinations explicitly described herein. Configuration
controls as described herein may include “compound con
trols” as described in U.S. patent application Ser. No.
14/192,184, titled “Compound Controls” and filed on Feb.
27, 2014, which is incorporated herein by reference.
As discussed above, configuration controls may be used

to dynamically generate an interface to configure a generic
program. FIG. 1 schematically illustrates a process in which
a user configures a generic program using one or more
configuration controls which are presented by a system
having a user interface, according to Some embodiments.
Selection and presentation of configuration controls in
method 100 may be performed by one or more systems with
which a user may interface via user commands, actions, etc.

In method 100, a configuration control is selected from a
set of configuration controls 110 and presented to a user in
order for a computing system to present a user interface
through which the user 130 may configure a generic pro
gram 140. A Suitable system may select the configuration
control from the set of configuration controls 110 in a whole
or in part based on logic provided by the configuration
template 150, to be described below. As used herein, “pre
sentation of a configuration control may include rendering
all or portions of user interface 120 to the user based on the
configuration control.
The user may interact with the rendered user interface to

provide configuration information for the generic program.
The selection of the configuration control is determined
based on a configuration template 150 which, as discussed
above, may have previously been defined (e.g., by a tech
nical user) to make configuration of a generic program easier
for a user (e.g., a business user). The configuration template
may define a sequence of controls to be used for configu
ration of generic program 140, which may include one or
more of the configuration controls 110. The selection of a
configuration control may be dynamically performed based
on the configuration template, user input provided to a
currently selected configuration control and/or other con
figuration control(s), one or more lookup files, any other
suitable factors, or combinations thereof.

In the example of FIG. 1, a set of configuration controls
110 are available for dynamic generation of an interface to
configure a generic program. The configuration controls
may include a user interface portion and an operational
portion. A user interface portion of a configuration control
may define, in any Suitable way, how the computer system
executing the control will render a user interface when
presenting the configuration control. The operational portion
may be associated with one or more parameters, variables or
arguments and/or one or more programs that provide func
tionality for the user interface or otherwise. Such association
may be by including these aspects (e.g., parameters) within

10

15

25

30

35

40

45

50

55

60

65

8
the operational portion and/or by linking to parameters that
are stored elsewhere. For example, the operational portion
may include a pointer to a program (or may include the
program itself) configured to perform validation of data
entered into the rendered configuration control user inter
face. The user interface portion and operational portions of
a configuration control are discussed in further detail below
in relation to FIG. 2.

In act 101 of method 100, a computing system with which
user 130 interacts renders a user interface based on the user
interface portion of the currently selected configuration
control. The user interface may include any number of any
type of user interface elements, such as but not limited to,
text boxes, buttons, sliders, list boxes, drop-down lists,
menus, toolbars, icons, tree views, labels, etc. AS is known
in the art, a computing system may render graphical repre
sentations of such elements on a display. A user may provide
one or more inputs, such as a mouse movement, a mouse
click, a key stroke, etc. correlated with the displayed element
Such that the computer system will associate that user input
with a specific meaning defined by programming of the
control. The user interface elements and how to render them
(e.g., their layout) may be defined by the user interface
portion of the currently selected configuration control in any
suitable way.

According to Some embodiments, one or more of the user
interface elements of the rendered configuration control user
interface 120 may be populated with data based at least in
part on the operational portion of the currently selected
configuration control. For example, the operational portion
may define values available for selection within one or more
user interface elements of the rendered configuration con
trol. Such values may be static values stored with the
configuration control, and/or may be dynamically deter
mined (e.g., by executing one or more programs or other
wise executing logic of the operational portion of the
configuration control). Accordingly, the visual look and feel
of the rendered configuration control user interface 120 may
be defined by the user interface portion of the currently
selected configuration control, whereas at least some data
values available for selection within the rendered configu
ration control user interface may be defined by the program
ming of the operational portion of the currently selected
configuration control.

According to Some embodiments, the operational portion
of a configuration control may determine initial behavior of
the rendered user interface of the configuration control,
and/or may determine reactive behavior of the rendered user
interface. Initial behavior may include defining values avail
able for selection within one or more user interface elements
of the rendered configuration control, as discussed above.
For instance, a system presenting a configuration control
may define selectable values of user interface elements of
the configuration control based on the operational portion of
the configuration control. Reactive behavior may include
updating values for selection within one or more user
interface elements of the rendered user interface 120, per
forming validity checks, populating fields of the user inter
face, showing and/or hiding user interface elements, etc.,
any of which may be based at least in part on user input 102
provided to the rendered user interface. For example, a
rendered configuration control may include a user interface
element to select a file. Once the file has been selected, a
program of the configuration controls operational portion
may be executed that checks the file is readable, that the path
is valid, and produces a preview of the contents of the file
for display in another user interface element of the configu

US 9,684,526 B2

ration control. In some cases, parameters and/or executable
code, which may be static and/or dynamic, that are associ
ated with the operational portion of a configuration control
may be evaluated multiple times as a user interacts with the
rendered configuration control (e.g., if the user then selects
a different file in the above example).
A system may determine configuration values to be

applied to the generic program 140 being configured based
on user input 102. For example, the user may enter values
via one or more user interface elements. These values may
be directly used to populate parameters of the generic
program 140. Such as by assigning values typed by the user
to the parameters. Alternatively, or additionally, the user
may interact with user interface elements that have implied
values. Such as buttons or sliders, wherein the implied values
are assigned to parameters of the generic program 140.
Alternatively, the values may be modified based on the
operational portion of the currently rendered configuration
control before being Supplied to the generic program.

According to Some embodiments, an adapter may provide
mappings between values provided via user input to the
currently rendered configuration control user interface and
parameters of the generic program. An adapter may be
defined in conjunction with the configuration template, for
example, by a technical user who also defines the configu
ration template itself. The adapter may be, for example,
stored as part of generic program 140, stored as part of
configuration template 150, and/or may be stored as a
separate component not shown in the figure. An adapter may
allow reuse of the same configuration control for different
aspects of a configuration process since the adapter may map
the same parameter within two copies of the same configu
ration control to different parameters of the generic program
during each use of the configuration control during configu
ration. Accordingly, the adapter may generally be defined in
conjunction with the configuration template since the con
figuration controls identified by the configuration template
have a dependency upon the way the adapter utilizes them
to define values of parameters of the generic program being
configured.
As one non-limiting example of use of an adapter, a

configuration control being presented may use a first param
eter name for a data field within its user interface, whereas
this value is to be mapped to a parameter within the generic
program having a different parameter name. The adapter
may have been configured Such that it maps the value of the
configuration control’s first parameter to the generic pro
gram’s parameter when a value is provided by a user. In this
way, an adapter may allow reuse of the same configuration
control for different aspects of a configuration process since
the adapter may map the same parameter within two copies
of the same configuration control to different parameters of
the generic program during each use of the configuration
control during configuration.

In act 104, a further configuration control is selected for
presentation from configuration controls 110. The configu
ration control selected may be the same configuration con
trol as was previously presented (i.e., by rendering the
configuration controls user interface as described above) or
may be a different configuration control. Configuration
template 150 and/or the initial configuration control may, at
least in part, determine which configuration control is
selected for presentation. The configuration template may
indicate an ordered sequence of configuration controls to be
presented, and/or may include logic for dynamically deter
mining a configuration control to be presented. Additionally,
or alternatively, a presented configuration control may be

10

15

25

30

35

40

45

50

55

60

65

10
selected based at least in part on aspects of the operational
portion of the initially presented configuration control.
According to some embodiments, a configuration control
may include a parameter that identifies a Subsequent con
figuration control to present. Such a parameter may be static
(e.g., stored with the configuration control with a fixed
value) or dynamic (e.g., may execute logic that results in a
value identifying a Subsequent configuration control to pres
ent. A dynamic parameter may execute such logic at least in
part by accessing a lookup file, which may for example be
defined and/or stored with the configuration template 150.

According to some embodiments, selecting a configura
tion control for presentation may be based upon data pro
vided via user input to any number of previously rendered
configuration controls. As an example, a first configuration
control may be presented in which a user provides input to
select a data file. The configuration template and/or execut
able logic within the first configuration control may then
identify a second configuration control to present based on
the provided input (e.g., based on the file's location in a file
system, based on the file type, its extension, etc.).

According to Some embodiments, a configuration control
may include one or more values that are defined based on
configuration template 150. The configuration control may
include one or more references to values to be defined by a
configuration template that resolve to said values based on
the configuration template in use. For example, a number of
configuration controls may include a parameter defined in
the same way to have the value of a parameter "company
name' (and which, for example, may be displayed within

a user interface rendered based on any of those configuration
controls). By defining a value of "company name within
the configuration template, each of the configuration con
trols, when used to render a user interface, may display the
value in the user interface. This may be performed, for
example, by passing the value of “company name defined
in the configuration template to the parameter whose value
depends on "company name within a configuration con
trol.
As discussed above, information defining the configura

tion process may be stored and then accessed by the system
to select controls at various stages in the configuration
process and provide data values that are used, as the selected
controls are used. Such as to change options presented in
display elements or to change the manner in which user
input alters the process. In some embodiments, that infor
mation may be stored as a “template.” A configuration
template may be developed for the particular generic pro
gram 140 being configured. For example, a programmer
defining the generic program 140 may also define the
configuration template 150 so that a business analyst con
figuring the generic program may utilize controls defined by
the configuration template (including any number of con
figuration controls) to provide configuration information for
the generic program. As discussed above, the configuration
template may include, and/or may be associated with, logic
to dynamically determine a configuration control based on
one or more factors. Thus, a dynamically generated interface
for configuring the generic program may be presented to a
USC.

According to Some embodiments, a system may access
one or more lookup files to identify a Subsequent configu
ration control to present, which may for example be per
formed based on data provided within the configuration
template and/or within another configuration control (e.g.,
one currently being presented). A lookup file may include
any number of indexes such that a configuration template

US 9,684,526 B2
11

may provide one or values to the lookup and in response
receive an indication of a configuration control to Subse
quently present. For example, where a user provides a file
name to a first presented configuration control, the file name,
Some aspect of the file name (e.g., the extension) and/or 5
information derived from the file name (e.g., the file type, a
size of the file, etc.) may be used to perform a lookup of one
or more lookup files. A result of the lookup(s) may identify
a Subsequent configuration control to present. Using one or
more lookups to identify a configuration control for presen- 10
tation may have an advantage that the logic to make Such an
identification may be stored separately from the configura
tion template. For example, the configuration template may
be associated with one or more lookup files that dictate logic
for identifying configuration controls during a configuration 15
process, and accordingly the logic may be changed without
modification of the configuration template, but rather only
by modifying values within the lookup file(s).
Once a user has provided Suitable configuration informa

tion via a presented configuration control, an indication that 20
a new configuration control should be identified may be
provided in any Suitable way. According to some embodi
ments, user interface elements indicating steps in the con
figuration process of the generic program may be rendered
Such that the user may proceed to a Subsequent step and/or 25
return to a preceding step, by activating Such an element. For
example, where configuration controls are presented via a
wizard, the wizard may present a configuration control and
in addition provide buttons to move forward and backwards
through the configuration process. When a user activates the 30
“forward” button, the system may respond by executing
logic to identify another configuration control and present
the configuration control via the techniques discussed above.
Alternatively, the logic may be executed prior to activation
of the button such that, once the button is activated, the 35
system may promptly present the Subsequent configuration
control.

FIG. 2 depicts illustrative components of a configuration
control, according to Some embodiments. As discussed
above, a configuration control (including a common control) 40
may include a user interface portion and an operational
portion. It will be appreciated that, while FIG. 2 shows these
portions graphically, these portions may be implemented by
computer executable instructions and data, or indications of
where data is to be obtained, while the portion is being 45
executed or otherwise evaluated. In the example of FIG. 2,
configuration control 210 includes a user interface portion
220 and operational portion 230. The user interface portion
220 defines three illustrative user interface elements 221,
222 and 223, which are a text box, a drop-down list and a 50
pair of radio buttons, respectively. As discussed above, user
interface elements defined by a user interface portion of a
configuration control may be rendered within a user inter
face and displayed to a user, who may provide user input to
one or more of these elements. An association between 55
values of these user interface elements and parameters of a
generic program may have previously been established (e.g.,
via an adapter as discussed above). As a result, by providing
user input to the user interface elements 221, 222 and 223,
a user may provide configuration information to the generic 60
program.

In the example of FIG. 2, operational portion 230 defines
one or more parameters 231 and is associated with one or
more programs 232. As discussed above, in general an
operational portion of a configuration control may include 65
any number of parameters and/or programs (including Zero
of either of these types of elements). Programs 232 may

12
include any executable logic, such as, but not limited to,
Scripts, declarative statements and/or expressions, dataflow
graphs and/or dataflow subgraphs, and operational portion
230 of configuration control 210 may store any number of
Such programs with the configuration control and/or may
include a pointer to any number of Such programs. When
configuration control 210 is presented by a suitable appli
cation, any one or more of programs 232 may be executed
within that application or as a separate process, as the
invention is not limited to any particular method in which
executable logic may be executed as part of a configuration
control. For example, program(s) 232 may include an
expression to be executed by the application presenting the
configuration control 210.

According to Some embodiments, program(s) 232 may
include executable logic that checks the validity of user
input to one or more user interface elements of the rendered
configuration control user interface. For example, a user
interface element may have restrictions on the type of data
that may be entered. Such as by restricting the range of
values that may be validly entered, or by limiting the types
of characters that may be entered (e.g., prohibiting spaces
for a file path value). Program(s) 232 may thereby include
executable logic that, in response to user input to the
rendered configuration control user interface, determines the
validity of contents of one or more user interface elements
of the user interface. Where content is determined to be
invalid, an indication may be provided to the user interface
to visually or otherwise alert the user as to the invalid
content. In some cases, executable logic present in the
operational portion 230 may produce a message to aid the
user in providing valid content and provide the message to
the user interface for presentation to the user.

Operational portion 230 may define one or more param
eters 231. Parameter definitions may include, for example, a
listing of parameter names and may, in some cases, include
default values for those parameters. Parameter(s) 231 may
include any number of Static parameters and/or parameters
whose values that are determined dynamically based on
executable logic which may be included within the param
eter expression, within program(s) 232 and/or may be
obtained from another location. According to some embodi
ments, parameter(s) 231 include one or more parameters
expressed by an interpreted parameter definition language.
These parameter expressions may be evaluated when pre
senting configuration control 210 or otherwise such that the
statement resolves to a parameter value. For example, a
parameter may be defined that so that it evaluates to “A”
when a particular data file exists, and evaluates to “B” when
the data file does not exist.

Parameter(s) 231 may include values utilized by any
executable logic of the program(s) 232. These variables may
allow the executable logic associated with the configuration
control 210 to be reused in other configuration controls,
since changing the value or one or more of these variables
may thereby change the behavior of the same executable
logic. For example, two different configuration controls may
be associated with the same program via their respective
operational portions. The program may, in operation, refer
ence a parameter value of a respective configuration control
(e.g., by referencing a name of the parameter). By utilizing
different values of the parameter in each of the two con
figuration controls, the behavior of the program may be
different in each case even though the same program is being
executed. Thus, a generic program may be used in the
context of an operational portion of a configuration control.

US 9,684,526 B2
13

As a non-limiting example, executable logic may check
that the extension of a filename conforms to a desired file
extension (e.g., “...txt,” “...dat, etc.), and may be written to
check a filename against the desired file extension expressed
as a parameter. Parameter(s) 231 may thereby include a
parameter for the desired file extension, such that the execut
able logic will compare a filename provided via user input
to the rendered configuration control user interface to the
parameter value. Two configuration controls may thereby
use the same executable logic to check the file extension, yet
may check for different file extensions if they are configured
with different values of the file extension parameter utilized
by the executable logic.

According to Some embodiments, a parameter of param
eters 231 may define, at least in part, a Subsequent configu
ration control to present after presentation of configuration
control 210. Such a parameter may be given a particular
label or otherwise identified so that a system presenting
configuration control 210 may be instructed to evaluate this
parameter to identify the Subsequent configuration control.
In some cases, the parameter may have a static value Such
that presentation of configuration control 210 is always
followed by a particular configuration control identified by
the parameter's value. In some cases, the parameter may
have a value that is dynamically determined such that the
resolved parameter value identifies the Subsequent configu
ration control. Such dynamic resolution of the parameter
value may be based, at least in part, on an associated
configuration template and/or one or more lookup files, in
addition to any interpreted expressions to be evaluated
within the parameter's value. For example, a first parameter
that indicates a Subsequent configuration control may
include logic that evaluates the current date and additionally
reads the value of a second parameter of parameters 231.
Based on the value of the second parameter, a lookup file is
identified that indicates names of configuration controls,
which are looked up by date. The evaluation of the present
date then results in selection of a name of a Subsequent
configuration control, to which the first parameter's value
resolves.
As discussed above, an operational portion of a configu

ration control may have its own scope Such that parameters
within the operational portion of a first instance of a con
figuration control may resolve to values independently of
parameters within the operational portion of a second
instance of the same configuration control. The scope of an
operational portion may be lexical (static) or dynamic in
nature. When determining the value of a parameter of
operational portion 230, any number of other values may be
used to perform said evaluation, including: other parameters
of the same operational portion, parameters defined within a
configuration template used to define the current configu
ration sequence, parameters returned by one of program(s)
232, parameters defined within an execution environment, or
combinations thereof.

FIGS. 3A-B depict an illustrative use of several configu
ration controls to configure a generic program based on a
sequence, according to some embodiments. As discussed
above, a configuration template may define a sequence of
configuration controls that may be dynamically presented to
a user. In some cases, this sequence may be presented by a
program called a “wizard' that may provide additional
functionality over and above the presented sequence of
configuration controls. The 'wizard.” for example, may
access information—whether as user input, pre-stored data,
or information in Some other form—and use this information

5

10

15

25

30

35

40

45

50

55

60

65

14
to determine which controls to present in an area. The wizard
may also provide data to a selected control to adapt the
control to a specific context.

In the example of FIG. 3A, a configuration template
defines sequence 310, which includes six configuration
controls. This sequence of configuration controls may be
presented to a user via a wizard or otherwise. Irrespective of
how the sequence is presented to a user, a Suitable system
(e.g., the system presenting configuration control 110 in
method 100) may first present configuration control 301.
Subsequently, either configuration control 302 or configu
ration control 303 is presented to the user. As discussed
above, such a decision may be made based on, for example,
user input provided by the user to a rendered configuration
control user interface of configuration control 301, via one
or more lookup files, or combinations thereof.

In the example of FIG. 3A, when configuration control
303 is presented, no further configuration control is pre
sented. This may represent, for example, a use case in which
the generic program may be configured based solely on the
input provided to configuration controls 301 and 303. Oth
erwise, if configuration control 302 is presented to a user,
either configuration control 304, configuration control 305
or configuration control 306 is subsequently presented.
Which of these configuration controls to present may be
determined based on user input provided by the user to a
rendered configuration control user interface of any of
configuration controls 301 and/or 302, or otherwise.

According to some embodiments, a user interface may be
presented based on a configuration sequence without the first
presented configuration control necessarily being the most
upstream configuration control (configuration control 301 in
the example of FIG. 3A). For example, a system may present
a user interface to a user based on configuration sequence
310 by first presenting configuration control 302 in cases
where it is known that configuration control 303 will never
be accessed (e.g., in a use case in which the decision
outcome for determining which of configuration control 302
and 303 will be chosen is known in advance). Thus, rather
than producing a new configuration sequence including only
configuration controls 302 and 304-306 configured as shown
in FIG. 3A, configuration sequence 310 may be used along
with a specification that configuration control 302 is to be
the first configuration control presented.
As discussed above, a configuration sequence, Such as

illustrative configuration sequence 310, may define configu
ration controls that are presented by a wizard. FIG. 3B
depicts an illustrative example of a user interface generated
by a system executing a wizard. In this example, the wizard
presents configuration controls as defined by a sequence and
additionally provides user interface elements for navigating
between the configuration controls. Configuration wizard
user interface 320 presents a configuration control 330 (e.g.,
any of configuration controls 301-306 according to configu
ration sequence 310) and provides navigation buttons 340
and 350 which a user may use to navigate between presented
configuration controls. As discussed above in relation to
FIG. 1, a user activating a navigation button of a user
interface (e.g., by clicking on the button) may initiate a
determination of a configuration control to present based on
one or more factors.

Configuration wizard user interface 320 may show and/or
hide navigation buttons 340 and/or 350 based on the con
figuration sequence being used. In the example of configu
ration sequence 310, configuration wizard user interface 320
may hide navigation button 340 during presentation of
configuration control 301, since there is no prior configu

US 9,684,526 B2
15

ration control in the defined sequence to which a user might
navigate. Similarly, configuration wizard user interface 320
may hide navigation button 350 during presentation of
configuration controls 304,305 or 306 or at any time during
the configuration sequence when the wizard has not received
sufficient user input or other information to select the next
control in the sequence.

According to some embodiments, activation of navigation
button 350 may result in a validity check of input provided
to the currently presented configuration control 330 (e.g., via
the operational portion of the presented configuration con
trol). Such a check may ensure that input is valid before a
user proceeds to the next step in the defined sequence. In a
case where some aspect of the input is determined to be
invalid, the configuration wizard may rather provide an
indication to the user that action is required (i.e., entry of
valid data) before the next step may be accessed. Addition
ally, or alternatively, navigation button 350 may be hidden,
grayed out or otherwise visibly deactivated until valid data
has been provided to a currently presented configuration
control.

According to some embodiments, a system presenting
configuration wizard user interface 320 may save a state of
the configuration wizard that indicates steps previously
and/or Subsequently taken through an associated configura
tion sequence. This may allow the navigation buttons 340
and/or 350 to function by accessing this state to determine
which configuration control was presented previously or
Subsequently in the active sequence. For example, if a user
navigates through configuration sequence 310 via configu
ration controls 301, 302 then 305 in that sequence, a state
representing that sequence of controls (i.e., 301 to 302 to
305) may be stored. Accordingly, when navigating to the
previous step in the active sequence, the state may be read
to determine which configuration control should be pre
sented. Once a user has navigated to a previous step, the later
steps that were previously visited may be stored to allow a
user to return to those steps. For example, in the above
illustrative sequence a user may navigate back to configu
ration control 302, then may wish to navigate forward again.
The saved state may allow identification of configuration
control 305 as being the subsequent configuration control to
present based on these navigational actions.

FIG. 4 depicts a functional block diagram illustrating
configuration of a dataflow graph, according to some
embodiments. In the example of FIG. 4, a configuration
sequence 410 has been defined using configuration controls
(which may include using a configuration template as dis
cussed above in relation to FIG. 1) for configuration of
generic dataflow graph 430. An adapter 420 provides a
mapping between values provided as input to a user inter
face rendered based on the configuration controls specified
by the configuration sequence to parameter values of the
generic dataflow graph. Dataflow graphs, and parameter
values for dataflow graphs are described in further detail in
U.S. Pat. No. 5,966,072, titled “Executing Computations
Expressed as Graphs,” and in U.S. Pat. No. 7,716,630, titled
“Managing Parameters For Graph-Based Computations.”
both of which are hereby incorporated by reference in their
entireties.

In the example of FIG. 4, only the first two steps of
configuration sequence 410 are depicted, and it should be
appreciated that any number of additional steps may be
included (including dynamically determined steps as in the
example of FIG. 3A). In the depicted steps, configuration
control 401 is used to select a file path corresponding to a
first input file (“Input File 1”) in the dataflow graph and

10

15

25

30

35

40

45

50

55

60

65

16
configuration control 402 is used to select a file path
corresponding to a second input file (“Input File 2) in the
dataflow graph.

Generic dataflow graph 430 is an illustrative dataflow
graph, which in this example shows joining of data from two
Sources and outputting the joined data to an output file, and
is presented merely as one example of a dataflow graph.
Generic dataflow graph 430 may be associated with any
number of parameter definitions, which configure the graph
to receive, store and/or use values for defined parameters,
including any number of parameter definitions for each of
the four components of the graph (“Input file 1.” “Input file
2. “Join' and “Output File') in addition to any number of
parameters associated with the graph itself. For the purposes
of illustrating the example embodiment shown in FIG. 4.
however, only parameters 431 and 432 corresponding to
input file paths for the input file components are depicted.

According to Some embodiments, configuration controls
401 and 402 may represent the same underlying configura
tion control, which may be reused in each of the first two
steps of configuration sequence 410. Alternatively, configu
ration controls 401 and 402 may include the same user
interface portion but may have different operational por
tions. In either case, configuration controls 401 and 402
include the same user interface portion, shown in the figure,
which enables a user to select a file. The user interface
portion includes a text box in which a selected file path is
displayed (401a and 402a in configuration controls 401 and
402, respectively) and a “browse” button that, when acti
vated, allows a user to browse a file system for a selected file
(401b and 402b in configuration controls 401 and 402.
respectively).

Configuration controls 401 and 402 (and further configu
ration controls used in configuration sequence 410) may be
presented to a user in any suitable way, including by
rendering the depicted user interface portions in a wizard
(e.g., in a configuration wizard user interface as depicted in
FIG. 3B). In the example of FIG. 4, configuration control
401 is first presented to a user, which includes rendering the
user interface portion of the configuration control as shown
in the figure. A user may select a file path via browse button
401b, and the file path of the selected file is shown in text
box 401a, as discussed above. This file path is then provided
to file path parameter 431 of generic dataflow graph 430 via
adapter 420.
As discussed above, an adapter may indicate how values

selected within a configuration controls rendered user inter
face are to be mapped to a generic program’s parameters.
The adapter may be part of the generic program, part of the
configuration template that defines the configuration
sequence being performed, or may be a separate component.
Irrespective of where the adapter is defined, in the example
of FIG. 4A the adapter is configured to map the file path
parameter selected during presentation of configuration con
trol 401 to file path parameter 431 in the dataflow graph 430.
The user may then proceed (e.g., via a navigation button in
a presented configuration wizard user interface) to the next
step in configuration sequence 410, wherein configuration
control 402 is presented. A file path may be selected via
browse button 402b, and the file path of the selected file is
shown in textbox 402a. This file path is then provided to file
path parameter 432 of generic dataflow graph 430 via
adapter 420, wherein the adapter is configured to map the
file path parameter selected during presentation of configu
ration control 402 to file path parameter 432 in the dataflow
graph. In this way, values of parameters 431 and 432 of the
generic dataflow graph 430 may be selected by a user.

US 9,684,526 B2
17

As discussed above, configuration control 401 and con
figuration control 402 may represent the same underlying
configuration control. In the example of FIG. 4, therefore,
this single configuration control representing a "file selec
tion' configuration activity is reused for two steps of the
configuration sequence by providing Suitable mappings for
each of the two steps via the adapter such that different
parameters of the generic dataflow graph are given values in
each step. This configuration control may also be used, for
example, when selecting a file for the “Output File' com
ponent of the generic dataflow graph. In this way, a con
figuration template may express configuration sequence 410
as including a number of configuration controls, at least
Some of which may be presented in a dynamically deter
mined sequence.

FIG.5 depicts configuration controls and generic dataflow
graphs stored in a metadata repository, according to some
embodiments. As used herein, a “metadata repository” refers
to a datastore configured to store different types of objects in
addition to metadata associated with those objects, which
may include relational links between objects of the same or
different types. For instance, a metadata repository may
store a dataflow graph and sets of values of parameters of the
dataflow graph, where each set of parameter values has a
relational link to the dataflow graph.

According to some embodiments, a metadata repository
may include data objects, including configuration controls,
dataflow graphs, configuration templates and parameter sets,
associations between at least Some of these objects, and
metadata associated with each object stored in the reposi
tory. Metadata repositories are described in further detail in
U.S. Pat. No. 7,899,833, titled “Managing Related Data
Objects,” which is hereby incorporated by reference in its
entirety.

While configuration controls and generic programs may
generally be stored in any suitable way, system 500 depicts
an illustrative embodiment in which configuration controls
and generic dataflow graphs are stored in a metadata reposi
tory. In addition, configuration templates associated with the
generic dataflow graphs are stored in the metadata repository
along with parameter sets, representing the product of a
process of configuring a generic dataflow graph using an
associated configuration template. A generic dataflow graph
may be executed using an established parameter set for the
graph Such that the graph is executed using the parameters
defined by the parameter set. Associations between elements
shown in FIG. 5 are illustrated by broken lines, and are
discussed below. It should be appreciated that storing the
illustrated objects may be done by recording the computer
instructions and data comprising those objects in memory
assigned to the repository. However, a repository may also
be complemented by storing links to or other identification
of instructions or data. Accordingly, the repository may be
implemented in any suitable way.

In the example of FIG. 5, metadata repository 520
includes configuration controls 522 at least some of which
are referenced by one or more of configuration templates
526. As discussed above, a configuration template may
specify a sequence including one or more configuration
controls. Accordingly, a configuration template may be
associated with one or more of configuration controls 522.
Additionally, each configuration template is associated with
a particular one of generic dataflow graphs 524. A single
generic dataflow graph may, however, be associated with
more than one configuration template if, for example, mul
tiple ways to configure the graph as embodied as different
configuration templates are defined. When a generic graph is

10

15

25

30

35

40

45

50

55

60

65

18
configured via a configuration template as described herein,
the resulting parameters defined for the associated generic
graph may be stored in a parameter set. Accordingly, each
parameter set is associated with a particular graph.
When a generic graph is executed, one or more datastores

540 may be accessed. Datastores 540 may include number
of any type(s) of data sources, including flat files, database
tables, database queries, etc. In the example of FIG. 5, data
absorbed and produced by execution of a dataflow graph is
not stored in the metadata repository, but rather in one or
more files on any number of suitable file systems. In
addition, in the example of FIG. 5 configuration templates
526 make use of one or more lookup files 530 to determine
a configuration control for presentation during a configura
tion process, as described above.
As discussed above, a generic program may be configured

by different people, with different skill sets, providing dif
ferent types of inputs at different times. FIG. 6 depicts an
illustrative development process of users configuring a
generic program using techniques described herein. In the
example of FIG. 6, three users 610, 620 and 630 each
perform a step of process 600, namely steps 602, 604 and
606, respectively. These users may be three different people
each having a different role (and potentially different skill
set) within a business organization. It will be appreciated
that in general, however, multiple steps of process 600 may
be performed by the same user. For example, steps 602 and
604 may be performed by the same individual.

In step 602, a generic program is defined. User 610 may,
in some cases, be a skilled programmer familiar with the
particular programming environment in which the generic
program is written. For example, in cases where the generic
program is a dataflow graph, user 610 may be a user skilled
in writing dataflow graphs.

In step 604, a configuration template for the generic
program defined in step 602 is defined. User 620 may, in
Some cases, be a skilled programmer familiar with the
particular programming environment in which the configu
ration template is written. The configuration template may
be defined using any suitable application, which may or may
not be the same application as was used to define the generic
program. The configuration template defines a sequence in
which parameters of the generic program may be provided
as input. As discussed above, this may include the use of one
or more configuration controls and may further include or
otherwise access logic for dynamically determining which
configuration control to present to a user during configura
tion of the generic program. Accordingly, user 620 may
define Such logic (e.g., by defining one or more lookup files).
According to some embodiments, users 610 and/or 620 may
define an adapter that maps parameter values of the generic
program to values provided as input to the user interface
defined by the configuration template. Such an adapter may
be configured to be part of the configuration template, part
of the generic program, or both.

In step 606, the generic program is configured using a user
interface defined by the configuration template defined in
step 604. User 630 may be a user familiar with requirements
of the business, such as a business analyst. The results of the
configuration process in step 606 may be that the generic
program is immediately executed using the provided param
eter values, and/or that the parameter values are stored in
any Suitable way Such that the generic program may be
executed at a later time using the values. Irrespective of
when it occurs, in step 608, the generic program is executed
using the parameter values provided in step 606.

US 9,684,526 B2
19

FIG. 7 illustrates an example of a suitable computing
system environment 700 on which the technology described
herein may be implemented. The computing system envi
ronment 700 is only one example of a suitable computing
environment and is not intended to Suggest any limitation as
to the scope of use or functionality of the technology
described herein. Neither should the computing environment
700 be interpreted as having any dependency or requirement
relating to any one or combination of components illustrated
in the exemplary operating environment 700.
The technology described herein is operational with

numerous other general purpose or special purpose comput
ing system environments or configurations. Examples of
well-known computing systems, environments, and/or con
figurations that may be Suitable for use with the technology
described herein include, but are not limited to, personal
computers, server computers, hand-held or laptop devices,
multiprocessor Systems, microprocessor-based systems, set
top boxes, programmable consumer electronics, network
PCs, minicomputers, mainframe computers, distributed
computing environments that include any of the above
systems or devices, and the like.
The computing environment may execute computer-ex

ecutable instructions, such as program modules. Generally,
program modules include routines, programs, objects, com
ponents, data structures, etc. that perform particular tasks or
implement particular abstract data types. The technology
described herein may also be practiced in distributed com
puting environments where tasks are performed by remote
processing devices that are linked through a communica
tions network. In a distributed computing environment,
program modules may be located in both local and remote
computer storage media including memory storage devices.

With reference to FIG. 7, an exemplary system for imple
menting the technology described herein includes a general
purpose computing device in the form of a computer 710.
Components of computer 710 may include, but are not
limited to, a processing unit 720, a system memory 730, and
a system bus 721 that couples various system components
including the system memory to the processing unit 720.
The system bus 721 may be any of several types of bus
structures including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of bus
architectures. By way of example, and not limitation, Such
architectures include Industry Standard Architecture (ISA)
bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association
(VESA) local bus, and Peripheral Component Interconnect
(PCI) bus also known as Mezzanine bus.
Computer 710 typically includes a variety of computer

readable media. Computer readable media can be any avail
able media that can be accessed by computer 710 and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita
tion, computer readable media may comprise computer
storage media and communication media. Computer storage
media includes volatile and nonvolatile, removable and
non-removable media implemented in any method or tech
nology for storage of information Such as computer readable
instructions, data structures, program modules or other data.
Computer storage media includes, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical disk storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which can be used to store the desired
information and which can accessed by computer 710.

10

15

25

30

35

40

45

50

55

60

65

20
Communication media typically embodies computer read
able instructions, data structures, program modules or other
data in a modulated data signal Such as a carrier wave or
other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or
changed in Such a manner as to encode information in the
signal. By way of example, and not limitation, communi
cation media includes wired media Such as a wired network
or direct-wired connection, and wireless media Such as
acoustic, RF, infrared and other wireless media. Combina
tions of the any of the above should also be included within
the scope of computer readable media.
The system memory 730 includes computer storage media

in the form of volatile and/or nonvolatile memory such as
read only memory (ROM) 731 and random access memory
(RAM) 732. A basic input/output system 733 (BIOS), con
taining the basic routines that help to transfer information
between elements within computer 710, such as during
start-up, is typically stored in ROM 731. RAM 732 typically
contains data and/or program modules that are immediately
accessible to and/or presently being operated on by process
ing unit 720. By way of example, and not limitation, FIG. 7
illustrates operating system 734, application programs 735,
other program modules 736, and program data 737.
The computer 710 may also include other removable/non

removable, Volatile/nonvolatile computer storage media. By
way of example only, FIG. 7 illustrates a hard disk drive 741
that reads from or writes to non-removable, nonvolatile
magnetic media, a magnetic disk drive 751 that reads from
or writes to a removable, nonvolatile magnetic disk 752, and
an optical disk drive 755 that reads from or writes to a
removable, nonvolatile optical disk 756 such as a CD ROM
or other optical media. Other removable/non-removable,
Volatile/nonvolatile computer storage media that can be used
in the exemplary operating environment include, but are not
limited to, magnetic tape cassettes, flash memory cards,
digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 741 is
typically connected to the system bus 721 through a non
removable memory interface such as interface 740, and
magnetic disk drive 751 and optical disk drive 755 are
typically connected to the system bus 721 by a removable
memory interface, such as interface 750.
The drives and their associated computer storage media

discussed above and illustrated in FIG. 7, provide storage of
computer readable instructions, data structures, program
modules and other data for the computer 710. In FIG. 7, for
example, hard disk drive 741 is illustrated as storing oper
ating system 744, application programs 745, other program
modules 746, and program data 747. Note that these com
ponents can either be the same as or different from operating
system 734, application programs 735, other program mod
ules 736, and program data 737. Operating system 744,
application programs 745, other program modules 746, and
program data 747 are given different numbers here to
illustrate that, at a minimum, they are different copies. A user
may enter commands and information into the computer 710
through input devices such as a keyboard 762 and pointing
device 761, commonly referred to as a mouse, trackball or
touch pad. Other input devices (not shown) may include a
microphone, joystick, game pad, satellite dish, Scanner, or
the like. These and other input devices are often connected
to the processing unit 720 through a user input interface 760
that is coupled to the system bus, but may be connected by
other interface and bus structures. Such as a parallel port,
game port or a universal serial bus (USB). A monitor 791 or

US 9,684,526 B2
21

other type of display device is also connected to the system
bus 721 via an interface, such as a video interface 790. In
addition to the monitor, computers may also include other
peripheral output devices such as speakers 797 and printer
796, which may be connected through an output peripheral
interface 795.
The computer 710 may operate in a networked environ

ment using logical connections to one or more remote
computers, such as a remote computer 780. The remote
computer 780 may be a personal computer, a server, a router,
a network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to the computer 710, although only a memory
storage device 781 has been illustrated in FIG. 7. The logical
connections depicted in FIG. 7 include a local area network
(LAN) 771 and a wide area network (WAN) 773, but may
also include other networks. Such networking environments
are commonplace in offices, enterprise-wide computer net
works, intranets and the Internet.
When used in a LAN networking environment, the com

puter 710 is connected to the LAN 771 through a network
interface or adapter 770. When used in a WAN networking
environment, the computer 710 typically includes a modem
772 or other means for establishing communications over
the WAN 773, such as the Internet. The modem 772, which
may be internal or external, may be connected to the system
bus 721 via the user input interface 760, or other appropriate
mechanism. In a networked environment, program modules
depicted relative to the computer 710, or portions thereof,
may be stored in the remote memory storage device. By way
of example, and not limitation, FIG. 7 illustrates remote
application programs 785 as residing on memory device
781. It will be appreciated that the network connections
shown are exemplary and other means of establishing a
communications link between the computers may be used.

Having thus described several aspects of at least one
embodiment of this invention, it is to be appreciated that
various alterations, modifications, and improvements will
readily occur to those skilled in the art. For example,
systems are described as being implemented with configu
ration controls. As defined herein the system, and controls,
are implemented Such that the configuration controls are
each defined to perform a task, and can be used at any point
in the configuration process where that task is to be per
formed. Such configuration controls may be adapted, for
example, by user input or either data services, for the
specific context in which that task is to be performed. It is
not a requirement that a configuration controls control be
used at multiple places in the configuration process. It also
is not a requirement that all of the configuration be per
formed by such configuration controls. Portions of the
process may be performed by controls that perform the same
regardless of the context in which they are executed, for
example.

Moreover, while controls are discussed herein with appli
cability to configuration of a generic dataflow graph, it will
be appreciated that such controls may be used to configure
any suitable generic program. For example, techniques for
configuring a generic program as discussed herein may be
used to configure a generic program written in any Suitable
data processing language, or may be used to configure a
generic program Written in a general purpose programming
language. Such as Java or C++. Having said that, techniques
for configuration of a generic program discussed herein may
have particular utility when the generic program is a data
flow graph or other data processing program having a high
level of parameterizability.

10

15

25

30

35

40

45

50

55

60

65

22
Such alterations, modifications, and improvements are

intended to be part of this disclosure, and are intended to be
within the spirit and scope of the invention. Further, though
advantages of the present invention are indicated, it should
be appreciated that not every embodiment of the technology
described herein will include every described advantage.
Some embodiments may not implement any features
described as advantageous herein and in Some instances one
or more of the described features may be implemented to
achieve further embodiments. Accordingly, the foregoing
description and drawings are by way of example only.
The above-described embodiments of the technology

described herein can be implemented in any of numerous
ways. For example, the embodiments may be implemented
using hardware, software or a combination thereof. When
implemented in software, the software code can be executed
on any Suitable processor or collection of processors,
whether provided in a single computer or distributed among
multiple computers. Such processors may be implemented
as integrated circuits, with one or more processors in an
integrated circuit component, including commercially avail
able integrated circuit components known in the art by
names such as CPU chips, GPU chips, microprocessor,
microcontroller, or co-processor. Alternatively, a processor
may be implemented in custom circuitry, Such as an ASIC,
or semi-custom circuitry resulting from configuring a pro
grammable logic device. As yet a further alternative, a
processor may be a portion of a larger circuit or semicon
ductor device, whether commercially available, semi-cus
tom or custom. As a specific example, Some commercially
available microprocessors have multiple cores such that one
or a Subset of those cores may constitute a processor.
Though, a processor may be implemented using circuitry in
any suitable format.

Further, it should be appreciated that a computer may be
embodied in any of a number of forms, such as a rack
mounted computer, a desktop computer, a laptop computer,
or a tablet computer. Additionally, a computer may be
embedded in a device not generally regarded as a computer
but with Suitable processing capabilities, including a Per
Sonal Digital Assistant (PDA), a Smart phone or any other
suitable portable or fixed electronic device.

Also, a computer may have one or more input and output
devices. These devices can be used, among other things, to
present a user interface. Examples of output devices that can
be used to provide a user interface include printers or display
screens for visual presentation of output and speakers or
other sound generating devices for audible presentation of
output. Examples of input devices that can be used for a user
interface include keyboards, and pointing devices, such as
mice, touch pads, and digitizing tablets. As another example,
a computer may receive input information through speech
recognition or in other audible format.

Such computers may be interconnected by one or more
networks in any suitable form, including as a local area
network or a wide area network, such as an enterprise
network or the Internet. Such networks may be based on any
Suitable technology and may operate according to any
suitable protocol and may include wireless networks, wired
networks or fiber optic networks.

Also, the various methods or processes outlined herein
may be coded as Software that is executable on one or more
processors that employ any one of a variety of operating
systems or platforms. Additionally, such software may be
written using any of a number of Suitable programming
languages and/or programming or Scripting tools, and also

US 9,684,526 B2
23

may be compiled as executable machine language code or
intermediate code that is executed on a framework or virtual
machine.

In this respect, the invention may be embodied as a
computer readable storage medium (or multiple computer
readable media) (e.g., a computer memory, one or more
floppy discs, compact discs (CD), optical discs, digital video
disks (DVD), magnetic tapes, flash memories, circuit con
figurations in Field Programmable Gate Arrays or other
semiconductor devices, or other tangible computer storage
medium) encoded with one or more programs that, when
executed on one or more computers or other processors,
perform methods that implement the various embodiments
of the invention discussed above. As is apparent from the
foregoing examples, a computer readable storage medium
may retain information for a sufficient time to provide
computer-executable instructions in a non-transitory form.
Such a computer readable storage medium or media can be
transportable. Such that the program or programs stored
thereon can be loaded onto one or more different computers
or other processors to implement various aspects of the
present invention as discussed above. As used herein, the
term "computer-readable storage medium' encompasses
only a non-transitory computer-readable medium that can be
considered to be a manufacture (i.e., article of manufacture)
or a machine. Alternatively or additionally, the invention
may be embodied as a computer readable medium other than
a computer-readable storage medium, Such as a propagating
signal.
The terms “program' or “software' are used herein in a

generic sense to refer to any type of computer code or set of
computer-executable instructions that can be employed to
program a computer or other processor to implement various
aspects of the present invention as discussed above. Addi
tionally, it should be appreciated that according to one aspect
of this embodiment, one or more computer programs that
when executed perform methods of the present invention
need not reside on a single computer or processor, but may
be distributed in a modular fashion amongst a number of
different computers or processors to implement various
aspects of the present invention.

Computer-executable instructions may be in many forms,
Such as program modules, executed by one or more com
puters or other devices. Generally, program modules include
routines, programs, objects, components, data structures,
etc. that perform particular tasks or implement particular
abstract data types. Typically the functionality of the pro
gram modules may be combined or distributed as desired in
various embodiments.

Also, data structures may be stored in computer-readable
media in any suitable form. For simplicity of illustration,
data structures may be shown to have fields that are related
through location in the data structure. Such relationships
may likewise beachieved by assigning storage for the fields
with locations in a computer-readable medium that conveys
relationship between the fields. However, any suitable
mechanism may be used to establish a relationship between
information in fields of a data structure, including through
the use of pointers, tags or other mechanisms that establish
relationship between data elements.

Various aspects of the present invention may be used
alone, in combination, or in a variety of arrangements not
specifically discussed in the embodiments described in the
foregoing and is therefore not limited in its application to the
details and arrangement of components set forth in the
foregoing description or illustrated in the drawings. For

10

15

25

30

35

40

45

50

55

60

65

24
example, aspects described in one embodiment may be
combined in any manner with aspects described in other
embodiments.

Also, the invention may be embodied as a method, of
which an example has been provided. The acts performed as
part of the method may be ordered in any suitable way.
Accordingly, embodiments may be constructed in which
acts are performed in an order different than illustrated,
which may include performing some acts simultaneously,
even though shown as sequential acts in illustrative embodi
mentS.

Further, some actions are described as taken by a “user.”
It should be appreciated that a “user need not be a single
individual, and that in Some embodiments, actions attribut
able to a “user' may be performed by a team of individuals
and/or an individual in combination with computer-assisted
tools or other mechanisms.
Use of ordinal terms such as “first,” “second,” “third,'

etc., in the claims to modify a claim element does not by
itself connote any priority, precedence, or order of one claim
element over another or the temporal order in which acts of
a method are performed, but are used merely as labels to
distinguish one claim element having a certain name from
another element having a same name (but for use of the
ordinal term) to distinguish the claim elements.

Also, the phraseology and terminology used herein is for
the purpose of description and should not be regarded as
limiting. The use of “including,” “comprising,” or “having.”
“containing,” “involving,” and variations thereof herein, is
meant to encompass the items listed thereafter and equiva
lents thereofas well as additional items.

What is claimed is:
1. A method of operating a data processing system

wherein at least one generic computer program parameter
ized by one or more parameters is configured via a user
interface defined at least in part according to a configuration
template, the data processing system comprising execution
time data and a plurality of configuration controls, including
at least a first configuration control and a second configu
ration control, the first and second configuration controls
comprising at least user interface portions and operational
portions, the method comprising:

rendering a first user interface based on the user interface
portion of the first configuration control;

receiving first user input through the first user interface,
the first user input providing values for at least one of
the one or more parameters for an instance of the at
least one generic program;

identifying the second configuration control by:
evaluating at least part of the operational portion of the

first configuration control, said evaluation being
based at least in part on the execution time data; and

evaluating a portion of the configuration template to
identify the second configuration control, the portion
of the configuration template being configured to
identify one of the plurality of configuration controls
based on a result of said evaluating at least part of the
operational portion of the first configuration control;

rendering a second user interface based on the user
interface portion of the identified second configuration
control; and

receiving second user input through the second user
interface, the second user input providing values for at
least one of the one or more parameters for the instance
of the at least one generic program.

US 9,684,526 B2
25

2. The method of claim 1, further comprising executing
the instance of the at least one generic program according to
values of the one or more parameters.

3. The method of claim 1, wherein identifying the second
configuration control is further based on the configuration
template.

4. The method of claim 3, wherein evaluating at least part
of the operational portion of the first configuration control
based at least in part on the execution time data comprises
evaluating at least one parameter of the configuration tem
plate.

5. The method of claim 1, wherein evaluating at least part
of the operational portion of the first configuration control
based at least in part on the execution time data comprises
evaluating at least one environment variable.

6. The method of claim 1, wherein the execution time data
includes one or more results of executing executable com
puter program code.

7. The method of claim 1, wherein the at least one generic
program is defined by a data processing language.

8. The method of claim 1, wherein the at least one generic
program includes a dataflow graph.

9. The method of claim 8, wherein a value of a first
parameter of the dataflow graph is determined based on the
first user input, and a value of a second parameter of the
dataflow graph is determined based on the second user input.

10. The method of claim 9, wherein the value of the first
parameter of the dataflow graph is determined based on a
predetermined mapping between at least one user interface
element of the first user interface and the first parameter of
the dataflow graph.

11. The method of claim 1, wherein the at least one
generic program includes a subgraph of a dataflow graph.

12. The method of claim 1, wherein identifying the second
configuration control is further based on the first user input.

13. The method of claim 1, wherein identifying the second
configuration control is further based on a result of perform
ing at least one lookup.

14. The method of claim 1, wherein the operational
portion of the first configuration control is evaluated in
response to user input provided through the first user inter
face.

15. A method of defining an interface for configuring at
least one generic computer program parameterized by one or
more parameters, comprising:

with a computing system, and based at least in part on user
input:

associating a first configuration control with the interface.
the first configuration control comprising at least an
operational portion and a user interface portion that
defines a first user interface, the first configuration
control configured to define values for at least one of
the one or more parameters for the at least one generic

5

10

15

25

30

35

40

45

50

26
program based at least in part on user input received
through the first user interface;

associating a second configuration control with the inter
face, the second configuration control comprising at
least an operational portion and a user interface portion
that defines a second user interface, the second con
figuration control configured to define values for at
least one of the one or more parameters for the at least
one generic program based at least in part on user input
received through the second user interface;

associating a third configuration control with the inter
face, the third configuration control comprising at least
an operational portion and a user interface portion that
defines a third user interface; and

recording data that, based at least in part upon execution
time data and the operational portion of the first con
figuration control, defines at least one instance in which
the user input received through the first user interface
is to cause rendering of the second user interface and at
least one instance in which the user input received
through the first user interface is to instead cause
rendering of the third user interface.

16. The method of claim 15, wherein the at least one
generic program includes a dataflow graph.

17. The method of claim 16, further comprising, based on
user input:

associating a value of a first parameter of the dataflow
graph with the first user input, and

associating a value of a second parameter of the dataflow
graph with the second user input.

18. The method of claim 16, wherein the one or more
parameters are associated with one or more components of
the dataflow graph.

19. The method of claim 15, wherein the at least one
generic program is defined by a data processing language.

20. The method of claim 15, wherein the at least one
program includes a subgraph of a dataflow graph.

21. The method of claim 15, wherein recording data that
defines at least one instance in which the user input received
through the first user interface is to cause rendering of the
second user interface comprises defining at least one lookup
file.

22. The method of claim 15, wherein recording data that
defines at least one instance in which the user input received
through the first user interface is to cause rendering of the
second user interface comprises recording data within the
operational portion of the first configuration control.

23. The method of claim 15, wherein at least part of the
operational portion of the first configuration control is
configured to be evaluated in response to user input provided
through the first user interface.

