a2 United States Patent

Rogers et al.

US012120134B2

US 12,120,134 B2
Oct. 15, 2024

(10) Patent No.:
45) Date of Patent:

(54) SYSTEM FOR AUTOMATICALLY
DISCOVERING, ENRICHING AND
REMEDIATING ENTITIES INTERACTING IN
A COMPUTER NETWORK

(71) Applicant: Noetic Cyber Inc., Waltham, MA (US)

(72) Inventors: Kenneth Allen Rogers, Stow, MA
(US); Allen D. Hadden, Stow, MA
(US); Craig Roberts, London (GB);
Hugh Pyle, Salem, MA (US)

(73) Assignee: Noetic Cyber Inc., Waltham, MA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 506 days.

(21) Appl. No.: 17/313,479

(22) Filed: May 6, 2021

(65) Prior Publication Data
US 2021/0352098 Al Nov. 11, 2021
Related U.S. Application Data

(60) Provisional application No. 63/058,143, filed on Jul.
29, 2020, provisional application No. 63/051,300,

(Continued)
(51) Imt.CL
HO4L 29/06 (2006.01)
GO6F 16245 (2019.01)
(Continued)
(52) US. CL
CPC ... HO4L 63/1425 (2013.01); GOG6F 16/245
(2019.01); GO6F 16/248 (2019.01);
(Continued)
100" T~ .
- 12

data
sourGes

entities

¥

7

computer environment §

user device 80
netwvork
interface
controlier 81 83
graph query and cisplay 84
display app 88
GUI 87
browser user :
interface 138 | 11 oo
“““““““““““ meimory 82 1

| il ¥ o entity event

| . r Hectors ;

|| entities data «© ec.o A2 bublic network 168
i sources | | workstation a0 et bY
B system 112 ~—

(58) Field of Classification Search
CPCccue. HO4L 63/1425; HO4L 63/0263; HO4L
63/1416; HO4L 63/1433; HO4L 63/20;

(Continued)

(56) References Cited
U.S. PATENT DOCUMENTS

10,069,849 B2* 9/2018 Muddu HOAL 43/045
10,958,674 B2* 3/2021 Tsironis HO4L 63/20
(Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 17/313,485, filed May 6, 2021, Rogers et al.
U.S. Appl. No. 17/313,487, filed May 6, 2021, Rogers.
U.S. Appl. No. 17/724,968, filed Apr. 20, 2022, Hadden et al.

Primary Examiner — Joseph P Hirl

Assistant Examiner — Thomas A Gyorfi

(74) Attorney, Agent, or Firm — Wolf, Greenfield &
Sacks, P.C.

(57) ABSTRACT

An entity tracking system and method for a computer
network employs proactive data collection and enrichment
driven by configurable rules and workflows responsive to
the discovery of new entities, changes to existing entities,
and specifics about the entities” attributes. The data collec-
tion is used in conjunction with graph technologies to map
interactions and relationships between various entities inter-
acting in the computer environment and deduce interactions
and relationships between the entities. Machine learning
techniques further identify, group or categorize entities and
identify patterns which are indicative of anomalies that
might be due to nefarious actions or compromised security.

23 Claims, 47 Drawing Sheets

server systern 118

ingress s&t‘ﬁ;ystem 180

¢ 1 AP1136 || ingestion engine 114

tracking and remediation subsystem 118
schema tenant service I
service 170 172

workfiow engine
122
policy/rutes
engine 120

integration
subsysiem

schgdu‘iﬂg machine leaiming
service 250 engine 124

entity refationship graph subsystem 126

graph access
sarvice 246

data store(s)

graph server 248 entity
relationship

graph{s) 162

graph query
interface 132

""" 140 graph dalabase

US 12,120,134 B2
Page 2

(1)

(52)

Related U.S. Application Data

filed on Jul. 13, 2020, provisional application No.
63/020,586, filed on May 6, 2020.

Int. CL.

GO6F 16/248 (2019.01)
GO6F 16/25 (2019.01)
GO6F 16/28 (2019.01)
GO6F 16/901 (2019.01)
GO6F 18214 (2023.01)
GO6K 9/62 (2022.01)
GO6N 20/00 (2019.01)
HO4L 9/40 (2022.01)
U.S. C1

CPC ... GO6F 16/252 (2019.01); GOGF 16/288

(2019.01); GO6F 16/9024 (2019.01); GOGF
18/214 (2023.01); GO6N 20/00 (2019.01);
HO4L 63/0263 (2013.01); HO4L 63/1416
(2013.01); HO4L 63/1433 (2013.01); HO4L
63/20 (2013.01)

(58) Field of Classification Search
CPC GO6F 16/245; GO6F 16/248; GO6F 16/252;
GOG6F 16/288; GO6F 16/9024; GO6F

18/214; GO6N 20/00

See application file for complete search history.

(56)

References Cited

U.S. PATENT DOCUMENTS

11,503,054 B2 *

11,729,204 Bl
2014/0372956 Al
2015/0237062 Al
2015/0249669 Al
2016/0224911 Al
2017/0017708 Al
2017/0063894 Al
2017/0236079 Al
2018/0027004 Al
2019/0158309 Al
2019/0158524 Al*
2019/0278777 Al
2020/0226156 Al
2020/0272972 Al
2021/0352099 Al
2022/0004546 Al
2022/0337620 Al
2023/0275912 Al

* cited by examiner

11/2022
8/2023
12/2014
8/2015
9/2015
8/2016
1/2017
3/2017
82017
1/2018
5/2019
5/2019
9/2019
7/2020
8/2020
11/2021
1/2022
10/2022
8/2023

Furtakcoovvvene GOGF 18/29
Coull et al.

Bisca et al.

Roytman et al.

Gamage et al.

Rush et al.

Fuchs et al.

Muddu et al.

Venna et al.

Huang et al.

Park et al.

Zadeh ... HO041. 43/045
Malik et al.

Borra et al.

Harry et al.

Rogers

Rogers et al.

Hadden et al.

Shahul Hameed et al.

US 12,120,134 B2

Sheet 1 of 47

Oct. 15, 2024

U.S. Patent

aseqeiep ydeub
aeiep y Oyl ...&\\/ erennmenonvem—aneavonvnnnonan 738 AIOWISW
. - TT aoeLBIU
198N JaSMoIg
— %1 soeueiul 81IN9 = dde ferds:
N%MMM%MWW fionb udesd 78 Aeidsip Emmm\cm:a s_amg.m
Aque ¥7 sonies ydeib %5 TG J8II0RUD
i aoepaiu
91 GP7 soinies MIOMIBL
(s)s1015 1B sseooe ydesd 0% @o1Aep Josn
g7 wesAsgns ydesd diysuoneles Algus
$ZT subus §57 e0in9s = d
Buities| auyoRL BUInpaYS § JjusuiuoiAuG JBIndwos
: 027 suibus wE CLT waishs
w sajnifAogod 89T SO %o%mo%o_ nd UOHEISHIOM | | $82IN0S connuo
wislsAsans 1 OTT 510508100 | o} gep U
" @c_mcwmm Jom uonesBaul wiens Agus
: ! 1y i
Il 071 aoinies 2
BDIAIDS JUBUS} BLUBYOS N»
i 97T wejsAsgns uoneipawes pue Bupjoes S90IN0S (42
R . LI LI e1ep SSjius
{ | PIT suibue uosebul _ o9¢T 1dY _
007 weisAsagns ssasbuy m
TT walsAs joaies 21 o

00l

U.S. Patent Oct. 15, 2024 Sheet 2 of 47 US 12,120,134 B2

computer system 50
60 data
bus
processing device 52
network
instructions 68-1 interface 62
main memory 54
instructions 68-2
output 64
static memory 56
computer readable input 66
medium 58
instructions 68-3

FIG. 1B

120,134 B2

b

Sheet 3 of 47 US 12

Oct. 15, 2024

U.S. Patent

ol 9Ol

{e3ep Mes 94015}

o¥l

gq ydein

aN {suose

PRNPIYIS s3BBULN}

3IALS

Bulinpayds

S

{ydess
Ay afeyew 31035)

15} 74
Jansas ydein

021

{ewayos ydesd
Ao safeueins)

IAG BLUBYDS

{s1ueuay sdnw
safBusw ‘sa10947)

{ SAOPIOM ryanels
sdeuew ‘uny)}

44!

{suonoe 153811 o1
SUOIRPUOD 1)

audug sajny

0cZi

¢Ll
IAG JUBUBY

{sonu8s
ydedd ynm aesiul}

74
IAG $5930Y

ydeso

{201A08
syepdosdde
01 $3IN0Y}
091
$$3I3U]

audul
MOAIOM

12150 sa3atIagny

\

{SwBISAS (BUBIXD
Gitm suopesdauy
adeusy)

891
suolIRsga3U|

8cl

a5epIIY]
Jasn
qsm

o

SWISAS
jeusap
IBYIO

US 12,120,134 B2

Sheet 4 of 47

Oct. 15, 2024

U.S. Patent

401

L-6-01
P4-11

cHil

¢ 9ld

2-0i

-0t

o-0i

7 =BI008T SSAD

Iun).////mm%c\mn_\

¥861-0Z0C-3AD

AEINE

123040} Bysedy-BuIpUIuInA

80-70-0207URISSAIRND

SOg-RuseIRg sadeusin Aden
SIS s o~ UesISg
ce-0}

safeusiy

-9~

FUPUIATGEISURA

UESSAINGEIBUIA

JBUMQ JBI50

an A P-ii BOST
10) SouRuspt B-11 umo oty
TEEIIOTS SR 2-0- 1 “=IOPUAA ‘EE 0 6=SIAN ¢ T
<) bl had aas . \m |~M4N<
7581-020Z-3A0 Saiuepy gaosusin-Supui4uIna Jgndassns 1e0UI0) ayaedy » R
IND IIEMIOS 956€656-703
e e e S599E-58Y 3UEISUf 203 SMY
Hid dey "G T =547 c-e- | p-0L a-0b SSIIE-5R L-e-i} v
L-Y-0 moﬂmeMm“M.M/h N SEFIIEEEY
-B-01 4 LILIPY BulY
l\ UGS iag
o {-e-0l
el

oct

US 12,120,134 B2

Sheet 5 of 47

Oct. 15, 2024

U.S. Patent

asegeiep ydeig

Oori

ZE1 soepelul
pue Jossazoid
Asenb ydeso

synsay AlanD

¢ 9ld

971 49ydein
diysuorejsy
Alug

0TC sjny
uoliezijeuoney
Juonezijeulion

ejeq Ayug

90¢

¥OE

01T 40103}j0) 71 9024n0s
eyeQ AUy ¢ eleq Ayiug
20E 00¢e

US 12,120,134 B2

Sheet 6 of 47

Oct. 15, 2024

U.S. Patent

aseqeiep ydesn

¥ Old

ZET S0elI93uU
pue J0sssa0.d
Atsnb ydein

F 3
SHNSaY Asanp

¥

0T sajny
uolyezijeuoiley
JuonezijewioN

eleq Ayiug

&

4

0¥l

gz1 Jeydesn
diysuoiiejay
Ayug

— 90V

01T J40139}j0D

4817

eieq Auug

oy

Z1 934n0§
eleq Ayaug

ooy

US 12,120,134 B2

Sheet 7 of 47

Oct. 15, 2024

U.S. Patent

Ot

G Ol

5321N0S
UOIBWIOJ| |07}

<02 1\/ SEITTg

971 Jeydesn
diysuonelay
Awug

f_

d-zi
\r(

01T J0129}j0)
eieq Aju3 4

/

905

Z1 324n0g
eieq AMiug

/
153101

JO elep Aljus
l{e jo fjnd yozeg

y0S

US 12,120,134 B2

Sheet 8 of 47

Oct. 15, 2024

U.S. Patent

oyl

9z 1 4oydeiny
diysuone|ay
Aug

9 'Old

809

01T 40109}j0)
eieQg A1jug

$924N0S
uonewsoyu) ¢t
12410

209

ﬁ:l d-zi

Z1 33nosg
eyeq Ayug

US 12,120,134 B2

Sheet 9 of 47

Oct. 15, 2024

U.S. Patent

Oyl

L 9Old

$92.N0¢G

0L
\/ 2Ul0

uoijewojuj

e O

uswiyoiug jeuondo

d-zi
j

ZT 32Inog
ejeq Aju3

9CT Jaydels 01T 10103}[0D |
diysuoile|oy e S
eieq A1jug

Aug v

sagueyd Joy

/\\ uljod oipoiad

0. 004
902

U.S. Patent Oct. 15, 2024 Sheet 10 of 47 US 12,120,134 B2

ek Componen
RIS RS SR ey Al

& Sty
BSOSO et g S
Rhgtne el e
Cwmmenbmer dus abresiatabie

andiaine pestacsin

R

A s
Siites e e
feonr iy i
LEBEL Aveass
Pemsr

US 12,120,134 B2

Sheet 11 of 47

Oct. 15, 2024

U.S. Patent

08

AR I mw
mwmm..mgm&%“@ mu.n&%%?ﬁ
o . mm..xam,mﬁ,mmm
®0 . QOO
@ oos EFEX ©
YA &om.m%..%&
£-808 |
" (I00-SIBIIHLS
e)
" hen-0neis-es _ BI00-07EaLIe0
“ui-d-oieual Qﬁﬁuv u%a MMwm MEW o GLi5-L10T-srYysW
__ m . jonIas 54 »wm r v @ .
"EGAEE1B0ONO-OA . &mm S s fsiss
@) pON e
5090-0207-0838w um;am?&s‘@am@ e _ mégéa%ag@a (BRI
‘ll«"l‘lll-l A m:,m Mwﬁwsmw}chmﬁ 4 A. kr.r. : L-g08
& m@w = my @ A .Bv sialidin-sape-196
£
R mmm%mmﬁ% | . . EOpRIsnun-6 %
L " w&%ﬁ&@% - A wm:mw.mw 8RO e |
forapadiss, RIIESL; mgg (deid
\\ hm\,,m‘mﬁm w0 N @@.mﬁs o ﬁi:mm 58 X
oS & mw, A A 018
ﬂgém%m u«ﬁ A p BlgE
1008-GU-S110 BSEL 620 @ wdan &8 v m sadiy v Bl
x v o OF D & s 7 B O H{T Ol ING {id /M SBUILDBL U

b

H

i

208

(08

18

-8
918

At

120,134 B2

b

12

Sheet 12 of 47 US

Oct. 15, 2024

U.S. Patent

0l Ol

pAEad4 LWoISnOAN/ S84/~ maU O~ Fpae 3~ adAis % waon ..mw.wxw.xwﬁtwm@xuwwmma.ﬁ«m

US 12,120,134 B2

Sheet 13 of 47

Oct. 15, 2024

U.S. Patent

Ll "Old

JUROTIV * SMRUCZFWE ~
$ 98440~ 3BT~ ROWRE-X
TPTIRUMD
oda 706 SARUQZRIE ~
1 59d Ky~ IV A~ SOWRE~Y
sproda
PUOZ~ERTTIURTIRAS ¥ 755 SARUCZVWE ~
R8dA3 - IR~ HOWEY-X
1pIsuoZATTTTAR T TRAY
BOIY YATYEINMITEOWR TN
PRIIBRANS
sgaryasdoad
,PIABUNRE TS, IVNTVL
yywduost wdis
pY
3 BT IXRAGIA~POAT IO SOWRS ~X
pPriouguy 3 ASN~S0URS~X
YIOHIDU *5IBBUCBTUGS 2 ITOD -
: §8GL4Y~ SRUIYX T~ BOWLE~X
dBuUgnG / STReRss / sjusuodwon /g rwed s TArusdo ST 1T ~4T0Z / 208 /B0ON SARGORBUR / $1JW /151 38w/ 303503 Tp~Tdeusdo s nanb~ 814y /m0s gussuodassoquys tH - awxy s udinyg, 1383¢
Jsugng ZoE 19T
IBUQNE * TP SMOBWOREUR 19U U~BIA 0w R -1

US 12,120,134 B2

Sheet 14 of 47

Oct. 15, 2024

U.S. Patent

¢l 9Ol4

R0

s

SILE)

ey usepus TR

deeoa il
R AR

&

23

o

MO ISRRI

SRR m;.»w.

P

Ry

ves

1_0z8

¥8

J—s:
/8

918
™\ 778

US 12,120,134 B2

Sheet 15 of 47

Oct. 15, 2024

¢l Ol

sbeios sigsipipd suoBl yiomey UBMOS
<RJUSUDHIIT B0BIOIS> | | <«SIBIBURIB] JSUOTHO Yy | | <BLCTNT SULDE> <RJUSUOTIUOTS IOHIBN>> <URUCHLINT) SIBMEOSSS
SJUBLOGLICD BI0D]
Jibs. Q P
N Bums ple iy
wsuoduwios
<UBUOTREO 15>
JBOLLINU S8AD
Buis :swmeye Buins e || Buys owpu» Buis awey «
s jueAs B ARIGUINA
<<UBIsAg> <<liohT APNSess> || <<l > e NIBIBUNA »>
L
usuieleuel s \ ALnoes 00 -

feue orsadde

U.S. Patent

g jekio 568 Bus sioion
w Buis uondunssp Bus Bey
o DU sy "l _Buus ‘awey
welan-pewsy b2y
<< «<fgf>s
B
S ABLE '3181-0)-50U0IBYG el spei-0psbuojeq
Rete :5jo1-0 $5Aj051 ABlie ‘SIR-0)SeM058) ARLR BISI01SHACSSS TP B P BULS Breh -
Buins anfen « fe o BUiAS ‘aNjeA » Buigs onpen « | Sor0rsBuoieq N hwwm_uwmg . .tju
w&é&ﬁ%&@ BUBL-HBWOD DpE-gAd) Ppe-uAd SJRRORSBNOSEL) ¢ cosaunpy iz <<Tlfe>
<<BUEBN S>> N <<SSBUPY GAdb> N \\o <<SSRIDPY pAdI>S P
SBIIBAIRSGD BI07)

5je-01-65U0IBY 5164-01-69A|0SSS

US 12,120,134 B2

Sheet 16 of 47

Oct. 15, 2024

U.S. Patent

i Old

P8l —\

¢¥8l

P8l —

MOIOM
jfenpiatpuy

i

l.\ m
\\ QUBUT MOINIOM

A

4A

&

a31AJaS 55320y ydeso

ove

SUONIE 3Ny

¥

STI|E 3iEpan

Janjas ydein 4dess

_— 991

qd
ydesny 4 UORANGYLUON
sany

Y

21807 uoglenien sajny

1-081

¢-081

oyl

£-081

auwdus
1d1aos ooads-a3ensued

auigug sany

_— 02t

US 12,120,134 B2

Sheet 17 of 47

Oct. 15, 2024

U.S. Patent

yict

ayae) aepdn

A

23uUBYD OB 40}
UOJ0E 93N08X]

ésadueyn

otet

Gl Old

[4%4°

CEIRE
}nsad payoea 10944 1y3nu
Ajsnoiaaad yum PoLIUSpL ol adueyd sy BuIBu3 ainy 34o1e aBueyd
nsos Adenb g HAM PRIEESSE ‘Aue 15BN e 03 ajut s8uey e sajesauad
U Asanb) 5pUBS BDIAIBS
sasedwod LOIYM SaUIp) ydessy
BY3 S3IN33IX3 ss908 ydesn
BUiBus sjny auidug ainy
-34 aWEul 3fny
8021 80¢gi 14 A4’ 0021

/rmmv

12,120,134 B2

Sheet 18 of 47 US

Oct. 15, 2024

U.S. Patent

CRINE)
SUoidYy

papeep

a3ueyo
ydein

Y0EL

91 'Ol

80¢l

SUOIY

| sayepdn
ydeid syoaul
sadueyd AU3

JUSWIUOHAUD
o1endiuewl
SuonIYy

cogl

ZLel

JUSWUOHALSD
03 sedueyd
uedi0

0oct

US 12,120,134 B2

Sheet 19 of 47

Oct. 15, 2024

U.S. Patent

Ll Old

98

/

Jppuieiad pov +

isissuiriad

se U pessed 8G DINCUS BIBD 1BUM

B~—z-6e8

O~ g-6eg

(@) wooakeid siqisuy uny

ol Wioy

YUie] pajeuioiny

@

anss| s1eelTy BI

e

1euUDdUIos) BUILDRI |

¢ideooe i fhim odAy ndup Jeupm

7

0oL/

uopdusseq

salijigrIaUng, S1IDeWa—J

m@/?mmm @~ -5cg

f IBLIT pua
D) eumo o M,mmaw mmmm

@ slasn wwmmm 18l jmdex

T LOe8

MOPPUOM 3PS

(]

vmw.\\%

1y usdp |8 UES 1oUMG 195 T~ 9068
(MO~ p-geg
UDIIDUOT) SAISNIOX
/ Pueo wmﬁmwmm G088
t (QaAIOSTH AQYIHW)
FIEVEANTIA TILS)~ 7z-000] 7
4~ PP ™ : i
@ UOHDUOT BAISNEN L-8E8
4 4 BIRIBUINA IS [7968 X
)
; ueds sou-pe unt Jpide .
- Z7v8 @) eshs (asen ~—g-08 0es
i
N rsynsal Aenb
e MOYEd ~z-0e g
ov @ WBUOTLIC T BUIYORIY
“ /) sonqeieunA Sepaley [19E8
M 4 [oreg) [1x | ssnigesuInA seipewsy | SMOIPIOM
48
zen \\\

US 12,120,134 B2

Sheet 20 of 47

Oct. 15, 2024

U.S. Patent

8l ©Old

aoueIsSUl sSME NHNLIM
{({enusy

‘Nd bel} ebelioig:abeiois)-{sseooe-seyl-(ms)-[pajeisui-seyl-(asueisul sme) ‘({7 /=< 2I008SSAD}
INDeA0)-[paisacosip:l-(ueagAligeisuIn A urdsAljIgeIaunA)-[Ag-pauueds: - eiemyo S 8iemyos)
-[pajeisui-sey:]-({eniy :uononpoid be |} aourisul SAAY82URISUI SMEB) (HOLVIN

& | [Enyi=ng efeioig

{ssen0e-S8Y} 0L NOLLYIIH SYH

PIBMIOS {papeIsui-sey) 0L NOILYIIY SYH {7 ‘enay = GOHIRPOIT R aiaym) SUERUTSMY aNY
{2 =< SI0IGEEAY nIsyM] 3N {{I8AGE5ID) OL NOLLYI3YN SYH UBISUMA | | {Aq-peuuRds) OL NOILVIIY SYH

FIBMYOS

{pafieIs-sey} O NOLLYTIH SYH

[“ani) = GEHSHPGINTEE] sioymMm) SHOBTEUT Sy

US 12,120,134 B2

Sheet 21 of 47

Oct. 15, 2024

U.S. Patent

6l Ol
2| ~18ea-8n Eletl L gipl-n LOIS80G308S | BXnYSHBUS +
88-IMD 0L UBIH HIOAEN LVAL-ALOE-AAD +
g216-3MD IBG YBIH SHOMIBN SPE0-6L02-3A0 +
G1dS04 dV S || SSSUISNE JBABBANBN
BOIBIaf ADQUSA SIEMCE
Fe-IMO 1277 UBIH HIOAMIBHN 82E5-0L0C-3AD -
VG332 7 LbiH YIOMIEN 2029-0202-3AD] +
MO S8AD Jorduly 58800y ET %)
ZYee Gl pel wosduexs omu gl -jsee-sn ablexy7 pec BGRZIPRIB0E emieLy -
g1 -iS8s-8n ebieyy pecs GipLpge L pa- +
e2i-isea-sh ablexy? pecl PaPLER LBgRE- +
Bl -i8ea-a1t abuepze six GOasgapaglip- +
95 C1 0CE ve | wooadwexe dun| E|-1Ses-8n 001" ZHREE L 30D L 0DSEAGI0- duundi+
21-1380-3n ebiB 7 SEDIRCGENLENE- +
GG P 8L Ve lwoy siduwexe duny B1-18B8-8N abie)g L upyBiol/ oY JeqQezEeGa(-1| nouekeqeq| +
Sdi 9AGY | d] 2ldnd pAd] PAdI SNQ Sl [auoZ Ajljigelieay 80A L 80URISU greouesu| alieN

(7 L) SaULOBIA [BNIIA SAY

| 300N GIONVAQY |

GPE8

0ge

@/

@

-~/ ebeioig
Ory o
858 &-958 _ ~ ONY #g@ L-9G8 g

@ : €L = 8I0DG SSAD | ! TuBDg Agemuina A/ m : SIBMYOS \ : BOUBISU SAAY
: m>m saiiep! M siandeosns m paiEIsUl sBY w
[[i i Tese
-G8 £-7G8 &vs8 L-pGe

US 12,120,134 B2

Sheet 22 of 47

Oct. 15, 2024

U.S. Patent

g 23815
zAwug

y-p0G1

V 91e3s
ZAuug

51 ol
$1 1044

G} (U044

12348
£31 W04

£-20G1

e-y051

0oL

Anzuepi
Azinug

0¢ 9ld

5-20G1

G-v0G1L

b
¢-0051

¢-01
L-0L

Aypuapy
1# Al

A 31818
AU

1-0061

¢1:0f
T1 044

L0611

b-20G1i

US 12,120,134 B2

Sheet 23 of 47

Oct. 15, 2024

U.S. Patent

L¢ "Old

0191
A1
apou a1e3s Sunsia
343 03 593ueyd JINgLINe ¢
paisanbal avjew
o, pu mww UDLND = soBueLd
«OLn PUE S ” 2nguLe pasanbal duieisawn

Fy

LHOd4, Hivn 2pou a1e3s
MU 01 IpoU Aluapt
Wl 3309 MaU B3I

BB puE apou ajes
WBLND JO AdOD € eI

WaIn? 01 88ps a1als
UBAIND UO BNYEA 0], 195

¢MMON
< MOPUIM
a8ueyn

8091

9091

¥091

poALBD9l
J8uryo aange Ajaug

2091

0091

US 12,120,134 B2

Sheet 24 of 47

Oct. 15, 2024

U.S. Patent

SHASDS UINIBE
pue Assnb anoex3

¢¢ 9l

cLil

BILBISUY
ydesd yualino 03 unuiod
wx31u0d Aianb daay

A

04l

8041

1ousdeus wioy
papeo; acueisuy ydess
MPU 01 X200 Asanb 18§

aouelsui ydesd
Mau 03U UL patsanbal
Jsge Joysdeus 154y peol

ioysdeus
358 01

1014d a3

pajsenbay

9041

¥OLL

ETREREY]
Atanb paseg-swi g,

0041
c0L

US 12,120,134 B2

Sheet 25 of 47

Oct. 15, 2024

U.S. Patent

£ Old

g8 L9 6 v £ 2
b 0E(6Z) 82 12 9T ST
Y2 €222 12 0T 61 8L
LLBLGL Vb €L 2L 1L

&

Wd 0521 [H| 1202624

0L6 8 4L 9 G ¥ |
€ 2 1 1€ OF 62 82 lauyoew NunL3Y SI0UMO ‘SUlDRW LON FU3HA (suloepsuoRw) HO LY Bew| ©
B8 T4 UL 8 AL W hE
40P 1707 Jdy x sanhug
Y zo8

(

98

etupyewl] Aenp 108eg

- 098

I

A

US 12,120,134 B2

Sheet 26 of 47

Oct. 15, 2024

U.S. Patent

jcgﬁww

vZ Ol

j‘l b-v1L8L

€S NVS
XOAGWIOISNY | === | TOASWIOISN) — IASO1IS.)T
2-9081 |

TIASEQ : w

I ginsddy ginsddy TiASddy

1-9081 | £-9081 c-v08 | 4081 h
L5081
4tk 1d1

208l L

F 1-¢081
/ 0081

US 12,120,134 B2

Sheet 27 of 47

Oct. 15, 2024

U.S. Patent

(421

G¢ Old

S
JULIND 03 HElS
19s pue a8pa
Asuapusdsp

PpPY

ydesd
Ul Sapou Ajgus
Buissiw I3eas)

uoneinp Alpiiea
snjd awil JuaLINd h 4
0] pug agpa 195

3

SR

8061

Fydesd ui
Apealje a8p3
Asuapuadap

9061

cydesd
uf Apesse
saaul

0164

usuodwod
aunyanaisesjus dugjod
Ag 40 143je BiA aieme
SaWodag uonesdasqul
J0193}j02 JUBAS A3iug

A

pajesousd
JUBAS pue Jusuodwod
2UNIONUISEIIUL HIOMIDU
10 Ajnoss Ag paldalsp
Aduspusdap e SuiAjdug
Aliapoe juomiIanN

061

¢06t

0061

US 12,120,134 B2

Sheet 28 of 47

Oct. 15, 2024

U.S. Patent

9¢ Ol

{£1=1) Z# 1UBAD LOITIDUUOD

-0}

UCIIRINDHT L =puU]
Ti=uels S-04
ujpsdsoy

b

dan/egpT=uod
UORBINP+E | =PUT

¢i=Hels
uQspuadap

£-0L -

}-01

(11=1) uaA3 W1S0] viasn

-0t

uonenp+1i=pul
Ti=4els
ujpagdso|

-0t

et

(Z1=1) T# JUBA3 UOHIDULOY)

HORRIND+T | =pUy
1i=1e1s
uipa8d3oy

A.lwll./ 18044
7 doy/eepT=uod\
UoHRINP+Z L =pul K
Zi=1es i
uQspuadap

€-01

(01=1) @1e1s ydeus jeniyy

-0

-t

L-01

U.S. Patent Oct. 15, 2024 Sheet 29 of 47 US 12,120,134 B2

FIG. 27

%

US 12,120,134 B2

Sheet 30 of 47

Oct. 15, 2024

U.S. Patent

SRGKIOIRUHL, ST
IS 2O 2380

BE 3RS 2

n....mmuwsoncmumn Aeyd

WA R8T w3y s

REsRAG B

HREE I

sannug

yes

. 028

— V18

~—— 918

U.S. Patent Oct. 15, 2024 Sheet 31 of 47 US 12,120,134 B2

150
BB

FIG. 29

808-1

812

“t
-
o

87
ga= |
800
802 -

US 12,120,134 B2

Sheet 32 of 47

Oct. 15, 2024

U.S. Patent

0t Old

b

0187

0G1

cl8

1-808

23 uBunduing RN
{1V wsundiung suliney
{1} smmippy DYW

{1} 55200y o

{1} BuminA 103

(1) 0V VOMIBN 703 iE

{1} afiouwy 203

{1} suny Appaepeny 203

L 08

008

U.S. Patent Oct. 15, 2024 Sheet 33 of 47 US 12,120,134 B2

FIG. 31

US 12,120,134 B2

Sheet 34 of 47

Oct. 15, 2024

U.S. Patent

£21-01

11

OL SINI089Y

¢t Ol

e--01

anl I

TTT/001 ;104

S1SOH

65°€9°0V1 007 JpPVdl

~ 95y “momtmuc}»ofmzw

ﬁ Wi ouwse 98eI018- W00 ”mstmzaw

0L sanNig

L P10t
&0

M pA75E-547 108Ru0Ts a

il
401
O SIAIOSIY WO 3T AIOIUDALL (DUENSNG
z-11 0533)
Mol " A
001'04 89T Z6T 4PPYdl Gy-L L
oL sanig

0L SIDINNGD

Z--01

OL SLOINNCD

ol 3%

211 ﬁ 0 1OLUIIBPSOMION T\//l e-1-04

SISOH {H-U-1 | 7! w0t
IJ [posd-rddy-na unpenain |

H

NOTSNA z-6-11

Ehp/an g

0L saNg
LW] YUY [RIEMUYOS
L% ﬁ : ! w

LT SIOANNO

L-1-04 D
I\/ /lm P-0L

ex?r | GLTSINTOSHY ~ LWOY U405 “mEmZmzo_

e

6U-i1
u-01 e’
o A 01 J
40l £EpT /A0 140d
et 1295891761 PPVl ULl
0L7SINI0S3Y 047 SanNI -
m £TIR .,mumtmwsfogwwzﬁ OL sanig
WO WL PO IBWENSNG —d o
H w ohwaz_m/\lf il

. L A i1

£56TYSTSY-TIT iBOULISU 703

OL SLOANNOD

A 3"

m JBNIBS TOESIN 1918M0S H

m
2-9-04 |\m]

B-14

/f £-p-04

1101
Uil

957T'89TT6T HPPVl) L---01
SiSOH |

oy sanig\ b-i-L} ﬁ £bp ‘dn anw

o

M zAXyf 1a0R B Eho\sumzw

gl o E b or"san

ﬁ COVIOERE-TIT 13UeISU 703 u

Rk -
v\ NO TSN
1-G-01

M B0] @Yydedy [aiemyos m

p-B-1 1
L-p-0l

US 12,120,134 B2

Sheet 35 of 47

Oct. 15, 2024

U.S. Patent

¢ Old

g0l J ¢H0b
=il
N0} H TT1/693 3404 Q01T°'05'89T°76T ppvdl G-U~1 1
S1SOH oﬁmgz_m
Ob-U-ii 3 #13%] tOM1D)
6555 0T 00T HPPYd] orsiannon /s ob b o e z? &0
GL Sani é w-gi
SISOH | 4w
ﬁ Yoy nmumtmuc_fo%mzw zZ-01 J u-Li POIC-THAY-INA : oc_%m_\atﬁ/l
04 saNig — Numnww
£pp/day oy
=01 H pL2SE-543 98ei01g W 017SaNIg
6-4-11 . L-%-11 H 1e30], yredy 1aiemyos w
u-0L P41y . _ o b1
I y--ot J
401 . A
1/ S150H H EeyT/dnt uad B SI3INNDD | osveesust uppval L0t J
SISOH
?m.mm,wwﬂ.mmm SAPPYdL Nssx _.. w B Nxvmx v w 0L OLT5GNIg w..wn L1 ﬁ spp ‘4ol ..toaw
04 SaNIg 01 sand L0

M 1At ”oumt.uuc_{og»ozu

L0} l\ 01 SANI

Ui

ﬁ 7R ”mumtwucﬁﬁo\s“mzw
Ol SONIg

of sanaX ——— g-U-1l

Z--01 { ese1v5259-003 oaumsiy 703 ﬁ B — w
-~ LUl -
\\ NOTSNNY
ﬁ JBALRS TOSSIN (8IRMYOS H _\Dcou\

M DL | SYIEOY IIEMYOS w

/I e-p-0l (-B-11

L-p-01

US 12,120,134 B2

Sheet 36 of 47

Oct. 15, 2024

U.S. Patent

ﬁ ¥/ZSE-547 198ei01g

ve Ol

e

P

a €G6TPSd58-{03 -BaURISUL 203

\\/l W~

poId-Tddy-INA SBUIYIBINIIA W

A

I

upsuny Z-6-11

m IROWO} dYdedy [BIRMOS w

,r ¢P-01

S g

-9-01 |\\

uQsuny

H JOAIRS TOSSIA 124EMYOS w

/l £-p-01

[
\

COPT9EB6-D3F B0URISU| 03 w

1-0-0t I\

m 1BOWO | aydedy (a1emyos w

ﬁ L~p-0i

US 12,120,134 B2

Sheet 37 of 47

Oct. 15, 2024

U.S. Patent

Ge Ol

[}ss3203Nn5UN
uocieZII039182
3unesipuy
Anus uo 3ey
10 3INGINEL 138

90v¢

uHonezLI0891ed
3unenpul

Anusuogey | N\ oLbz

10 31NguUNe 188

UOEZII08918) AU Ue [0
auwIDap uopez110893ed
03 0180} suiinbay
ajgeandyuod UOoIHpUOoD
-195N SAINIBX e s3y1uap!
auiduy siny auiduy ajny
2ove 00ve

US 12,120,134 B2

Sheet 38 of 47

Oct. 15, 2024

U.S. Patent

SBIHIUS Mau pzL08a1eD

9¢ Old

14574 4514

LTS EARERY. A TE]
HAI 1284400

oINe 03 Apeas (PO

é
Azeanooe

wamng

¥

Ajgesipousd pm siasn

Y

Azeanooe jepouws
BINSEDU O} PO

5385 B1Ep

{PPOW FiA Uil O posn UOIIEDHISA pue 21epn

T ydnouyy passed
i e180 UOIIEDIIIBA

51 uo1EINZYUOT [BpoWw
A pue e3ep Suitedy

duiuel] J0 39S & 318U
Q1 jey ut s s 1aseleq

‘syuauoduiod 123180
03Ut uopesidde ssauisng
e 3uisiaduwion SWaysAs
|eliul 9214083180 SURWINK

4

8052

uoeingiuo
{SpOW MBU 103[8S

y08e 204ge

0162

00sc

US 12,120,134 B2

Sheet 39 of 47

Oct. 15, 2024

U.S. Patent

L€ "Old

AJ1uD azii08aed
-0lne 0} |apow
TN 01 |jed e Buipnpul
payoune| MoPIoA

sdiysuoriejai/sanguiie
214109dS Y1Mm S3I11IU3
U0 43331431 03 paindluod
3jnJ auiduy ajny

ydeJss uj
papJod3ad Ajjeoijeuwioine
sdiysuolie|a
pue sangiie
‘PRIDA0ISIP AJIIUD MON

Y09l

¢09¢

009¢

US 12,120,134 B2

Sheet 40 of 47

Oct. 15, 2024

U.S. Patent

8¢ Old

I RSB PO SHIDRYD O HON
B PSR . RUGENER SRS 0y W ARRE SN PRARE (S R SOl Brang)

BUREDE DAY

US 12,120,134 B2

Sheet 41 of 47

Oct. 15, 2024

U.S. Patent

6€ Ol

99T e

{sAep} pouad a0e48

‘{shep) jeassiu ‘{Jlewa) JasH uolRPIEA
{Asanb ydesd) Asenb uopepiiea

{0°1-0) YBuans uonesi

{3x21) uondussag

{1x21) 2weN

[0Jiu0) uonesiy

e A ARENE V00 NE"_SARRIS- Rape. aan 514

T L v YTV

m— LT LT T Q.U‘

£-992 \l

09ac

\

WIV@N R

A {124) sjos3u0n) Sunnedniwy
{19quinu) Aousnbaliy pa1oadxy

{saquunu) apniudey sso parrsdxy

(154} 3108{9s) ALUNWILIO) 183U
{3x91) uondiosag
(3x=1) BweN

OLIBUDIS YSIY

[/SQE "o las pay X 0 auy X v gay v

J

3 = T

l

b SRR SNRRE MO R SSORRE X B RS X I Saar-

e

90 |

\

{}24] SOLBUIIS NSIY
{1@1) edoog

{31xa1) uopduasaq
(1x21) sweN

sy

US 12,120,134 B2

Sheet 42 of 47

Oct. 15, 2024

U.S. Patent

806

: ch gy eiind gl B SEDEID g Heh
Vg 100 YR OF SILBHY J0L RIGRHDARNY SRWINDEG B

06

Ay o

206

s

¥ sjrelsp ysiy

008

8

18

US 12,120,134 B2

Sheet 43 of 47

Oct. 15, 2024

U.S. Patent

Ly Ol

BBIRIAAT

WONYD 06

AL L

816

I

2

4

3

_zi8

¢y Old

US 12,120,134 B2

Sheet 44 of 47

Oct. 15, 2024

i A

] FOREE GOCHE B NS A SutArau
SOMERL O IS RO 1] B RS SRS I S e ey

£ 155 I8 SR0OE IR e ineilaat
5 5% 5 WL :

yaneinRy pusisog

a6 7i6

U.S. Patent

ey Old

US 12,120,134 B2

Sheet 45 of 47

Oct. 15, 2024

ORTRUGLS JRAIIYE Gy

BHE0G mnds

WG
B2

8€6

FBOIS MU

yi6

U.S. Patent

US 12,120,134 B2

Sheet 46 of 47

Oct. 15, 2024

U.S. Patent

7 1174

s}nsal
213 514

vy Ol

B2IAIBS S5200Y ydein

salienb pue
BHU0D Asky

19A19s ydesn

aa f\l 99}

ydeis

SNPOW UOLIBINED %51y

B

3182
A5 -@OAL

ﬁ\! 1474

21307 Buynpayos

A
f\! 4514

UDIRINSILOI LoKIe

{isi4) painpayos

3AS SulNpaYss

ﬁ\‘ 06e

Sheet 47 of 47

Oct. 15, 2024

Aupsiuan WD 8RS

WOLUSEIAD ARGEM

v86

DIiEL) BUS ALRUALODS

EAE Y

Ao piod Loddng

A

Z

%7 4

LL

e e
Eipp soucisng wund usdang

AUHUBHEAL NS STIRLINGS

286 systy

H 986

A

¥8

48

US 12,120,134 B2

1
SYSTEM FOR AUTOMATICALLY
DISCOVERING, ENRICHING AND
REMEDIATING ENTITIES INTERACTING IN
A COMPUTER NETWORK

RELATED APPLICATIONS

This application claims the benefit under 35 USC 119(e)
of U.S. Provisional Application No. 63/020,586, filed on
May 6, 2020, U.S. Provisional Application No. 63/051,300,
filed on Jul. 13, 2020, and U.S. Provisional Application No.
63/058,143, filed on Jul. 29, 2020, all of which are incor-
porated herein by reference in their entirety.

BACKGROUND OF THE INVENTION

Computer networks and systems have become increas-
ingly complex over time. This process has accelerated more
recently due to the adoption of technological trends such as
bring-your-own-device (BYOD), Internet-of-things (IoT),
cloud infrastructure, containerization, and microservices
architectures, to list a few examples. Modern computer
systems can comprise tens, hundreds, or even thousands of
interacting independent systems and services. These systems
can be transient, frequently appearing and then disappearing
from a computer network based on fluctuating demand,
ongoing changes/enhancements to software, and hardware
or software faults. These interacting services can be spread
across multiple geographic locations and computing envi-
ronments and might include traditional on-premise infra-
structure at multiple different sites working in conjunction
with private cloud environments and possibly multiple dif-
ferent public cloud environments.

SUMMARY OF THE INVENTION

The technological trends driving the increasing complex-
ity of computer networks offer significant advantages such
as better redundancy and fault tolerance, scalability and
burst-ability, and cost efficiency, to name a few.

At the same time, teams responsible for information
technology (IT) management, cybersecurity, data privacy
and compliance face significant new challenges.

The dynamic nature of modern computer environments
makes it extremely challenging for organizations to maintain
accurate catalogues of all entities present or interacting in
their computer environments. It is not feasible to depend on
human users to be responsible for maintaining an accurate
catalogue of computer assets and other entities. While
humans can play a role in the process, organizations increas-
ingly face a need to adopt techniques which automate the
process of maintaining, or being able to quickly generate, a
list of current entities in the environment along with their
significant attributes. Many IT and cybersecurity use cases
can be aided by an accurate catalogue of entities in the
computer environment that is always accurate and up to
date, accessible via application programming interfaces
(APIs), includes a high degree of detailed attribute infor-
mation about each entity, and also captures information
about how the many entities relate to, or interact with, each
other.

Additionally, traditional approaches focused primarily on
the existence of physical computers and the specific oper-
ating systems and software (and versions thereof) that were
running on them. This limited perspective has become
inadequate. Physical computers, perhaps with the exception
of individual, dedicated, personal-use computers such as

10

15

20

25

30

35

40

45

50

55

60

65

2

laptops, have been virtualized away. Increasingly, physical
computer servers are organized in clusters that are respon-
sible for running large numbers of virtual servers simulta-
neously. A mass adoption of new virtualization approaches
including containerization has been driven by and is itself a
driver of an accelerated adoption of microservices architec-
tures, in which large monolithic business applications are
broken down into many smaller and autonomous service
applications that interact with each other. As a result, in
modern computer environments, instead of worrying about
a single monolithic software application running on a single
dedicated physical computer, IT and cybersecurity profes-
sionals now need to worry about hundreds or thousands of
microservices which are dynamically added and removed,
scattered across multiple environments and interconnected
networks, and interacting in complex patterns that constitute
each logical business application. Considering that a large
enterprise typically has hundreds of distinct business appli-
cations, the challenges of understanding, maintaining, and
securing such an expansive and dynamic environment
become obvious.

While the complexity of modern computer environments
has increased dramatically, the number of skilled and quali-
fied individuals to monitor, maintain and secure these envi-
ronments has not kept up with demand. As of the end of
2019, there was an estimated shortfall of over four million
unfilled cybersecurity positions worldwide, and that number
is increasing dramatically. Thus, there is a critical need for
organizations to find ways to move work from, and increase
the efficiency of, the limited number of IT and security
professionals they have on staff to ensure that those limited
resources are focused on the most critical tasks that only
they can do.

One of the key challenges IT and security teams face is
establishing and maintaining a continuously accurate regis-
try of all computer and network assets, along with other
technical and nontechnical entities, interacting on their com-
puter networks. Without this information, teams struggle to
assess cyber risks or identify nefarious activity and therefore
struggle to protect their environment from cyber-attack.

The problem of maintaining an accurate list of computer
assets is not a new one. It has existed since the early days of
networked computers. There are many products which have
been developed over time to assist in dealing with the
challenge. Entire product categories were established in the
areas of IT Asset Management (ITAM) and Change Man-
agement Databases (CMDB). However, traditional
approaches tended to require a high degree of manual
interaction to keep them accurate as systems were added,
removed and modified, and the process was error prone. This
problem has been exacerbated by an explosion in the num-
ber of connected devices due to the adoption of BYOD, IoT,
cloud infrastructure, microservices architectures, container-
ization, and other technologies. Increasingly, products aim-
ing to address this issue have begun to adopt automatic
collection of information passively from various sources and
some degree of proactive scanning to populate and maintain
an asset registry. However, the results are often flawed,
resulting in stakeholders doubting the accuracy of the data
and opting not to use it.

With the increasing scale and dynamic nature of IT
infrastructure, existing static tools to track individual sys-
tems are no longer adequate. Instead, asset managers must
be able to analyze arbitrarily dynamic groupings of fast-
moving entities in the computer environment without losing
the ability to understand the big picture.

US 12,120,134 B2

3

Organizations have invested large sums of money and
effort to purchase, deploy, and maintain a variety of tech-
nologies that focus on various aspects of the I'T management
and cybersecurity problem spaces. Each of those technolo-
gies generates a great deal of valuable information which
paint small pieces of the overall picture of the computer
environment. However, the data tends to be siloed and
uncorrelated, making it difficult to see the “big picture.”
Security information and event management (STEM) tech-
nologies were created to pull together and correlate this
information but have been only partially successful due to
the massive amounts of data which they attempt to consume,
the cost and effort required to keep them properly tuned, and
the large volume of false positives which they tend to
generate.

What is needed by IT and security teams is a solution that
effectively discovers and tracks new entities arriving on a
computer network, previously known entities leaving the
network, changes to important attributes of each entity, and
the interactions or relationships between entities. This
insight, if available and reliable, would enable or augment a
broad set of IT and cybersecurity use cases including cyber
risk assessment, cybersecurity incident response, policy
compliance and audit, vulnerability management, and many
others.

The presently disclosed invention concerns methods and
systems for entity discovery, attribute resolution, and track-
ing in a computer network. In one example, the presently
disclosed system automates the discovery of entities, both
transiently or permanently present, in an organization’s
computer networks, the collection of important details and
attributes about each entity, and the tracking of interactions
and relationships between the various entities. Additionally,
based on the information discovered, collected and tracked,
the presently disclosed system can execute automated
actions driven by configurable rules to proactively collect
further details about the entities or their relationships and/or
to bring the entities into compliance with some desired
configuration or state.

More specifically, the presently disclosed system and
method concern passive data collection from a multitude of
existing data sources and technologies already in use in a
computer environment. Examples of such data collection
include monitoring log files, listening on event queues for
events generated by various technologies and data sources,
or pulling information from existing systems in the com-
puter environment that are already aggregating data from
multiple sources.

Additionally, the presently disclosed system and method
concern proactive data collection and enrichment driven by
configurable rules and workflows that are responsive to the
discovery of new entities, changes to existing entities, and
specifics about the entities” attributes. Proactive data col-
lection can also be triggered by timers or manual invocation
by users. Often, the purpose of proactive data collection is
to automatically explore and search for additional informa-
tion which is not directly available via passive collection.

In another example, the presently disclosed system and
method employ graph technologies to map interactions and
relationships between various entities interacting in the
computer environment. Using the collected data, the system
can deduce interactions and relationships between the enti-
ties, which can be significant in a large number of IT or
cybersecurity use cases.

The present system also uses machine learning techniques
and learned attribute sets and interaction patterns to help
identify, group or categorize entities or to identify patterns

10

15

20

25

30

35

40

45

50

55

60

65

4

which are indicative of anomalies that might be due to
nefarious actions or compromised security.

In yet another example, the presently disclosed system
includes proactive orchestration and automation capabilities
to automatically remediate errant entities or bring them into
compliance with policy. The orchestration and automation
components of the system are completely configurable and
extensible to support organizationally specific technologies,
situations, or policies.

By combining these capabilities, the presently disclosed
system and method are capable of providing information
technology and cybersecurity teams with helpful but here-
tofore unavailable insights and of expediting the discovery
and remediation of cybersecurity issues or compliance gaps
through adaptive use of computer automation.

In general, according to one aspect, the invention features
a method for managing a computer environment. Event data
for the computer environment is collected from a plurality of
different data sources by connecting to each data source and
retrieving the event data available from that data source.
Entity relationship information is generated, indicating enti-
ties and relationships between entities that are relevant to
security of the computer environment based on the collected
event data from the different data sources. The computer
environment is then managed based on the entity relation-
ship information.

In embodiments, relevant changes to the computer envi-
ronment are detected in the event data from the different data
sources, including a presence in the computer environment
of new entities that were previously unknown, changes to
properties of entities that were previously identified as being
present in the computer environment, or disappearances
from the computer environment of entities that were previ-
ously identified as being present in the computer environ-
ment. Existing entity relationship information is only modi-
fied to reflect the relevant changes in the computer
environment in response to determining that the relevant
changes are not already represented in the existing entity
relationship information. In one example, the event data is
selectively retrieved, with only the event data indicating the
relevant changes to the computer environment being col-
lected by periodically polling a data source for new event
data reflecting the relevant changes. In another example, the
event data is selectively retrieved in that only event data
indicating the relevant changes to the computer environment
in response to alerts transmitted by a data source.

A rules engine is configured with user-specified rules for
detecting specified conditions of the entities, properties of
entities, and relationships between entities indicated by the
entity relationship information. In response to detection of
the specified conditions, the rules engine performs specified
actions in response to detecting the specified conditions, the
rules engine performs specified actions, which can include
executing user-defined operations with respect to the com-
puter environment or having user-configurable software
programs execute the user-defined operations. In another
example, user-configurable workflows provided by a work-
flow engine execute the user-defined operations. These
workflows are also configurable to invoke other workflows
or software programs. The rules engine identifies which
rules can potentially be triggered by detected changes in
conditions indicated by the entity relationship information.
The rules engine then selectively evaluates the changed
conditions against the specified conditions only with respect
to the rules that were identified as potentially being triggered
by the detected changes in the conditions.

US 12,120,134 B2

5

The entity relationship information is generated based on
type definitions formatted according to a declarative schema
definition language, the type definitions including markup
specifying particular properties and relationships for differ-
ent entity types. Special entity types specific to particular
data sources inherit and/or extend the properties and rela-
tionships of other entity types according to a specified entity
type hierarchy. These special entity types specify additional
properties and relationships specific to the particular data
sources.

In one embodiment, the entity relationship information is
generated as an entity relationship graph representing the
entities, properties of the entities, and relationships between
the entities. The graph is stored in a graph database.

A graphical user interface rendered on a display of a user
device comprises a query builder that generates graph-based
queries based on input from a user via an input mechanism
of the user device. The query builder transmits the graph-
based queries for execution against the entity relationship
graph, and displays results of the graph-based queries. In
one example, the query builder limits selections by the user
for the graph-based queries to valid combinations of entity
types, relationships, and properties based on type definitions
specifying particular properties and relationships for each
entity type in the entity relationship information. In another
example, the query builder detects gestures input by the user
indicating selection of entity types and dragging of graphical
elements representing the selected entity types into the query
pane. The query builder then automatically determines and
displays valid relationship paths between the graphical ele-
ments representing the selected entity types. The query
builder also receives input from the user indicating selection
of which of the displayed valid relationship paths to be
referenced in the graph-based query and selection of specific
valid properties for each displayed graphical element rep-
resenting the selected entity types and further quantifies or
limits graph patterns targeted via the graph-based query.

In one embodiment, the entities in the entity relationship
graph are represented as a plurality of nodes, including an
identity node representing an immutable identity for the
entity, one or more state nodes representing mutable prop-
erties of the entity, and state edges connecting the identity
node and each of the one or more state nodes associated with
the identity node. These state edges are configured with start
and end timestamp properties that define a period of time
between the start and end timestamps during which the state
node is considered to represent a valid property for the
identity node. Values assigned to the properties of the
entities in the entity relationship graph are updated by
creating new state nodes with the updated values for the
properties and new state edges between the identity nodes
and the new state nodes. A start timestamp value indicating
a creation time for the new state node is assigned to each
state edge along with an end timestamp value indicating that
the new state node is currently valid. Similarly, an updated
end timestamp value indicating the creation time for the new
state node is then assigned to each state edge for the state
nodes representing the previous values of the property being
updated. Input is received via an input mechanism of a user
device indicating time values associated with queries sub-
mitted for execution against the entity relationship graph.
Submitted queries are then modified based on the time
values associated with the queries such that results of the
modified queries include only state nodes with start time-
stamp values indicating start times before the specified times
for the queries and end timestamp values either of zero or
indicating end times after the specified times for the queries.

10

15

20

25

30

35

40

45

50

55

60

65

6

Machine learning models for identifying patterns in the
entity relationship graph are also developed, and a machine
learning model training screen of a graphical user interface
rendered on a display of a user device detects selection by
a user of pre-classified data elements from the entity rela-
tionship graph based on input received from the user via an
input mechanism of the user device, and the machine
learning models are trained using the selected pre-classified
data elements. Also, future or existing unclassified data
elements from the entity relationship graph are classified. In
another example, patterns in the entity relationship graph
indicating abnormal conditions of the computer environ-
ment are identified using the trained machine learning
models. Changes in the entity relationship graph are also
detected and submitted to be processed by particular
machine learning models in response to determining that the
detected changes pertain to the particular machine learning
models. The pertinent machine learning models are also
used to determine whether the detected changes in the entity
relationship graph indicate abnormal conditions of the com-
puter environment.

In general, according to another aspect, the invention
features a system for managing a computer environment.
The system comprises a workstation system and a server
system. The workstation system executes one or more entity
event collectors. The collectors collect event data for the
computer environment from a plurality of different data
sources by connecting to each data source and retrieving the
event data available from that data source. The server system
executes a database system, which generates entity relation-
ship information indicating entities and relationships
between entities that are relevant to security of the computer
environment based on the collected event data from the
different data sources. The server system then manages the
computer environment based on the entity relationship infor-
mation.

The above and other features of the invention including
various novel details of construction and combinations of
parts, and other advantages, will now be more particularly
described with reference to the accompanying drawings and
pointed out in the claims. It will be understood that the
particular method and device embodying the invention are
shown by way of illustration and not as a limitation of the
invention. The principles and features of this invention may
be employed in various and numerous embodiments without
departing from the scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, reference characters refer
to the same parts throughout the different views. The draw-
ings are not necessarily to scale; emphasis has instead been
placed upon illustrating the principles of the invention. Of
the drawings:

FIG. 1A is a schematic diagram of an exemplary entity
discovery, resolution, tracking, and remediation system
according to an embodiment of the present invention;

FIG. 1B is a schematic diagram showing an exemplary
computer system for implementing the presently disclosed
workstation system, server system and/or user device;

FIG. 1C is a schematic diagram of the exemplary entity
discovery, resolution, tracking, and remediation system
showing a more detailed view of how data flows through the
system,

FIG. 2 is an illustration of an exemplary graph segment
displayed by the user device as part of a graphical user
interface;

US 12,120,134 B2

7

FIG. 3 is a schematic diagram showing a possible con-
figuration for collection, normalization, and rationalization
of data, with reference to steps of a data collection, normal-
ization, and rationalization process performed by the
depicted configuration;

FIG. 4 is a schematic diagram showing a possible con-
figuration for collection, normalization, and rationalization
of data, with reference to steps of a data collection, normal-
ization, and rationalization process performed by the
depicted configuration;

FIG. 5 is a schematic diagram showing a possible con-
figuration for collection of data, with reference to steps of a
data collection process performed by the depicted configu-
ration;

FIG. 6 is a schematic diagram showing a possible con-
figuration for collection of data, with reference to steps of a
data collection process performed by the depicted configu-
ration;

FIG. 7 is a schematic diagram showing a possible con-
figuration for collection of data, with reference to steps of a
data collection process performed by the depicted configu-
ration;

FIG. 8 is an illustration of an exemplary type definition
according to an embodiment of the present invention;

FIG. 9 is an illustration of an exemplary graph display
screen of a graphical user interface (GUI) rendered on a
display of the user device;

FIG. 10 is an illustration of an exemplary command line
interface of the GUI;

FIG. 11 is an illustration of an exemplary type definition
according to an embodiment of the present invention;

FIG. 12 is an illustration of an exemplary table display
screen of the GUI;

FIG. 13 is an illustration of an exemplary entity type
hierarchy;

FIG. 14 is a schematic diagram of a rules engine accord-
ing to an embodiment of the present invention;

FIG. 15 is a flow diagram illustrating exemplary steps
performed according to rule evaluation logic for selectively
re-evaluating rules of the rules engine in response to detect-
ing changes in the environment;

FIG. 16 is a state diagram showing how actions resulting
from organic changes to the computer environment result in
additional attribute and relationship data being added to the
graph;

FIG. 17 is an illustration of an exemplary workflow
configuration screen of the GUI;

FIG. 18 is an illustration of an exemplary relationship
between a query built using a graphical query builder and the
underlying raw query;

FIG. 19 is an illustration of an exemplary query builder
screen of the GUI;

FIG. 20 is an illustration of an exemplary segment of the
entity relationship graph according to an embodiment of the
present invention;

FIG. 21 is a flow diagram illustrating a growth mitigation
process deployed according to one embodiment of the
present invention;

FIG. 22 is a flow diagram illustrating a growth mitigation
process deployed according to another embodiment of the
present invention;

FIG. 23 is an illustration of an exemplary query submis-
sion screen of the GUI,

FIG. 24 is a schematic diagram depicting a computing
architecture to which the present invention is applicable;

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 25 is a flow diagram illustrating an exemplary
process for creating or updating event-trigged dependencies
in an entity relationship graph;

FIG. 26 is an illustration of an exemplary portion of the
entity relationship graph according to an embodiment of the
present invention;

FIG. 27 is an illustration of an exemplary type definition
screen of the GUI;

FIG. 28 is an illustration of the table display screen
displayed on a user device showing how specialized graph
queries are handled;

FIG. 29 is an illustration of the graph display screen
displayed on a user device showing an example of how
dependency query results are displayed;

FIG. 30 is an illustration of the graph display screen
displayed on a user device showing another example of how
dependency query results are displayed;

FIG. 31 is an illustration of the graph display screen
displayed on a user device showing another example of how
dependency query results are displayed;

FIG. 32 is an illustration of an exemplary portion of the
entity relationship graph according to an embodiment of the
present invention;

FIG. 33 is an illustration of an exemplary graph segment
that would be returned in response to an exemplary query;

FIG. 34 is an illustration of an exemplary graph segment
showing how results are filtered according to one embodi-
ment of the invention;

FIG. 35 is a flow diagram illustrating an exemplary
rules-based categorization method according to an embodi-
ment of the invention;

FIG. 36 is a flow diagram illustrating an exemplary
machine learning based categorization method according to
an embodiment of the invention;

FIG. 37 is a flow diagram illustrating an exemplary
process for machine learning categorization, according to an
embodiment of the present invention;

FIG. 38 is an illustration of an exemplary execute actions
screen of the GUI;

FIG. 39 is an illustration of an exemplary risk hierarchy
graph segment according to an embodiment of the invention;

FIG. 40 is an illustration of an exemplary new risk screen
of the GUI;

FIG. 41 is an illustration of an exemplary new risk
scenario screen of the GUI;

FIG. 42 is an illustration of an exemplary new mitigating
control screen of the GUI;

FIG. 43 is an illustration of an exemplary risk status
screen of the GUI;

FIG. 44 is a schematic diagram of a scheduling service
according to an embodiment of the present invention; and

FIG. 45 is an illustration of a risk dashboard screen of the
GUL

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The invention now will be described more fully herein-
after with reference to the accompanying drawings, in which
illustrative embodiments of the invention are shown. This
invention may, however, be embodied in many different
forms and should not be construed as limited to the embodi-
ments set forth herein; rather, these embodiments are pro-
vided so that this disclosure will be thorough and complete,
and will fully convey the scope of the invention to those
skilled in the art.

US 12,120,134 B2

9

As used herein, the term “and/or” includes any and all
combinations of one or more of the associated listed items.
Also, all conjunctions used are to be understood in the most
inclusive sense possible. Thus, the word “or” should be
understood as having the definition of a logical “or” rather
than that of a logical “exclusive or” unless the context
clearly necessitates otherwise. Further, the singular forms
and the articles “a”, “an” and “the” are intended to include
the plural forms as well, unless expressly stated otherwise.
It will be further understood that the terms: includes, com-
prises, including and/or comprising, when used in this
specification, specify the presence of stated features, inte-
gers, steps, operations, elements, and/or components, but do
not preclude the presence or addition of one or more other
features, integers, steps, operations, elements, components,
and/or groups thereof. Further, it will be understood that
when an element, including component or subsystem, is
referred to and/or shown as being connected or coupled to
another element, it can be directly connected or coupled to
the other element or intervening elements may be present.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill in the art to
which this invention belongs. It will be further understood
that terms, such as those defined in commonly used diction-
aries, should be interpreted as having a meaning that is
consistent with their meaning in the context of the relevant
art and will not be interpreted in an idealized or overly
formal sense unless expressly so defined herein.

One objective of the presently disclosed system and
method is to establish a comprehensive accounting and thus
understanding of an organization’s computer environ-
ment(s) 5 such as its computing devices and networks,
including all of the entities 8 interacting within or related to
those devices and networks, in order to aid in managing the
computer environment 5. A further objective is to use that
understanding of the computer environment 5 to derive
further insights that enable or support numerous information
technology (IT) and cybersecurity use cases. In this descrip-
tion the term “entities” should be interpreted as quite
broadly encompassing anything, physical, virtual or concep-
tual, interacting in the business environment and present on
its networks either directly or indirectly. Common examples
would be physical computers and network infrastructure
components, virtual computing systems (e.g. VMWare or
Amazon Web services (AWS) instances), computer operat-
ing systems, software programs/services, related software or
hardware vulnerabilities, users, security policies and access
privileges, data sets, physical locations, threats, threat
actors, etc. The present system and method are intended to
be configurable and extensible such that each instance can
be configured based on which types of entities 8 are of
interest for that particular organization or set of use case and
should therefore be tracked. The present system and method
can be further extended to incorporate new types of entities
8 not previously conceived of or provided out of the box.

FIG. 1A is a schematic diagram of an exemplary entity
discovery, resolution, tracking, and remediation system 100
according to one embodiment of the present invention.

The entity discovery, resolution, tracking, and remedia-
tion system 100 comprises a server system 118, a worksta-
tion system, and one or more user devices 80.

The server system 118 is typically implemented as a cloud
system. In some embodiments, the entity event collectors
110 may also be implemented as a cloud system. In some
cases, the server system 118 is one or more dedicated
servers. In other examples, they are virtual servers. Simi-

30

40

45

10

larly, the workstation system 112 could run on an actual or
virtual workstation. The server system 118 and/or worksta-
tion system 112 may run on a proprietary pr public cloud
system, implemented on one of the popular cloud systems
operated by vendors such as Alphabet Inc., Amazon, Inc.
(AWS), or Microsoft Corporation, or any cloud data storage
and compute platforms or data centers, in examples. In the
public cloud implementation, the underlying physical com-
puting resource is abstracted away from the users of the
system. The server system 118 and entity event collectors
110 may also be implemented as a container-based system
running containers, i.e., software units comprising a subject
application packaged together with relevant libraries and
dependencies, on clusters of physical and/or virtual
machines (e.g., as a Kubernetes cluster or analogous imple-
mentation using any suitable containerization platform).

In the illustrated example, the computer environment 5,
the server system 118, and the user device 80 are all
connected to a public network 90, which is typically a wide
area network such as the internet.

The computer environment 5 comprises a plurality of
entities 8 as well as data sources 12 pertaining to those
entities, as discussed above, and typically the workstation
system 112. Data sources 12 are deployed throughout the
environment 5 and are typically existing devices, compo-
nents, systems, datasets, or applications already present and
connected to the computer network or environment 5 in
which the present system and method are operating. In the
illustrated example, some entities 8 and data sources 12 are
also depicted outside of the computer environment 5. These
might include data sources 12 and/or entities 8 that are not
technically within the computer environment 5 but are
related or pertinent to the computer environment 5, provid-
ing, for example, supplemental information or event data
that can be correlated with that provided about internal
entities 8 that are within the computer environment 5. This
depiction is intended to elucidate the expansive nature of the
event data collected by the entity event collectors 110, but
the computer environment 5 could also be understood to
encompass all possible entities 8 for which event data can be
collected and all possible data sources 12 from which the
event data can be accessed and retrieved.

Executing on the workstation system 112 (e.g., on a
processor 52 of the workstation) are one or more entity event
collectors 110, which, in general, collect event data pertain-
ing to the computer environment 5 from a plurality of data
sources 12. The workstation system 112 executes the entity
event collectors 110 and monitors them to ensure they are
functioning properly.

Generally, the entity event collectors 110 collect the event
data by connecting to each data source 12 and retrieving the
event data available from that source 12. In one example, an
entity event collector 110 connects to the intended data
source 12, typically via an application programing interface
(API) 13 implemented by the data source 12. The user of the
system provides any credentials necessary to access the APIs
13 of the data sources 12, which are passed to the entity
event collectors 110 when they are configured to run on the
workstation system 112 and are used by the entity event
collectors 110 to access the API 13 of the data sources 12.

In embodiments, the entity event collectors 110 may
include or consist of one or more software apps that are
written in an interpreted programming language such as
Python. The collector app is transferred to a workstation
system 112, which is preferably designed to manage the
execution of a multitude of entity event collectors 110
simultaneously.

US 12,120,134 B2

11

The entity event collectors 110 look for any event data
that provides interesting details, attributes, or properties
about the entities 8 or event data that indicates interactions
or relationships between the different entities 8 and collect
a breadth of event data about all entities 8 of interest from
the configured data sources 12. In one example, the entity
event collectors 110 periodically make calls to the APIs 13
of the data sources 12 to determine if any new entity event
information is available. In another example, they receive
alerts from the data sources 12 indicating that new event data
is available.

In one embodiment, the entity event collectors 110 spe-
cifically detect relevant changes to the computer environ-
ment 5 and/or look for event data indicating the relevant
changes, including a presence in the computer environment
5 of new entities 8 that were previously unknown, disap-
pearances from the computer environment 5 of entities 8 that
were previously identified as being present in the computer
environment 5, and/or changes to properties of entities 8 that
were previously identified as being present in the computer
environment 5.

In one example, when the system 100 detects and/or
retrieves the event data indicating the relevant changes,
generating the entity relationship information may comprise
only modifying existing entity relationship information to
reflect the relevant changes in the computer environment 5
in response to determining that the relevant changes are not
already represented in the existing entity relationship infor-
mation. In another example, collecting the event data from
the different data sources 12 comprises selectively retrieving
only event data indicating the relevant changes to the
computer environment 5 by periodically polling a data
source for new event data reflecting the relevant changes. In
yet another example, collecting the event data from the
different data sources 12 comprises selectively retrieving
only event data indicating the relevant changes to the
computer environment 5 in response to alerts transmitted by
a data source 12.

The server system 118 executes (e.g., on one or more
processors 52 of the server system 118) various modules,
processes, services, engines, and/or subsystems, including
an ingress subsystem 160, which comprises an API 136 and
an ingestion engine 114, the tracking and remediation sub-
system 116, which comprises a schema service 170, a
scheduling service 250, a tenant service 172, a workflow
engine 122, a policy/rules engine 120, a machine learning
(ML) engine 124, as well as an integration subsystem 168
and an entity relationship graph subsystem 126. The entity
relationship graph subsystem 126 comprises the graph data-
base 140, which stores one or more entity relationship
graphs 162, for example, for different organizations. The
entity relationship graph subsystem 126 further comprises a
graph access service 246 and a graph server 248, the latter
of which in turn comprises a graph query interface 132. The
server system 118 also comprises one or more data stores
164 for persistently storing and managing collections of
data, including databases such as a graph database 140, in
one or more memory components 54, 56, 58 (for example).
These various modules, processes, services, engines, and/or
subsystems, which will be described in further detail below
with respect to the current and/or subsequent figures, are
generally each associated with separate tasks. In some cases,
they are discrete modules. or they are combined with other
modules into a unified code base. They can be running on the
same server or different servers, virtualized server system, or
a distributed computing system.

40

45

55

12

In general, the event data collected by the entity event
collectors 110 is used (e.g., by the server system 118) to
generate entity relationship information indicating entities 8
and relationships between entities 8 that are relevant to
management or security of the computer environment 5
based on the collected event data. In one example, the entity
relationship information includes an entity relationship
graph 162.

The entity event collectors 110 provide the collected event
data to the ingestion engine 114 of the server system 118.

The ingestion engine 114 receives the collected event data
from the entity event collectors 110 and generates aggre-
gated, cleaned correlated, normalized and confirmed entity
relationship information and/or event data based on the
collected event data and provides the aggregated, cleaned
correlated, normalized and confirmed entity relationship
information and/or event data to the tracking and remedia-
tion subsystem 116.

In general, the tracking and remediation subsystem 116
stores the aggregated, cleaned correlated, normalized and
confirmed entity relationship information in the data store(s)
164, such as in a database. The tracking and remediation
subsystem 116 also induces various enrichment and/or reme-
diation processes with respect to the entity relationship
information and the computer environment 5 (e.g., supple-
menting, correcting, or updating the entity relationship
information, effecting changes to the computer environment
5, effecting changes in other external environments) via the
entity event collectors 110, interaction with systems within
the computer environment 5, and/or interaction with other
external systems and technologies. The tracking and reme-
diation subsystem 116 also provides access to the entity
relationship information for the one or more user devices 80
via the API 136.

In embodiments, the tracking and remediation subsystem
116 receives and stores the aggregated, cleaned correlated,
normalized and confirmed entity relationship information
from the ingestion engine 114 and/or receives the aggre-
gated, cleaned correlated, normalized and confirmed event
data from the ingestion engine 114 and generates the entity
relationship information based on the aggregated, cleaned
correlated, normalized and confirmed event data, and stores
the generated entity relationship information.

In one embodiment, the tracking and remediation subsys-
tem 116 generates the entity relationship information by
generating a temporal entity relationship graph 162 based on
the information from the ingestion engine 114 and/or other
sources. The entity relationship graph 162 represents the
entities 8, properties of the entities, and relationships
between the entities. The tracking and remediation subsys-
tem 116 stores the entity relationship graph 162 in in a
temporal entity relationship data structure such as the graph
database 140.

The user device 80 is generally a computing device
operated by a user of the entity discovery, resolution, track-
ing, and remediation system 100. For the sake of clarity, a
single user device 80 is depicted, but it will be understood
that the system 100 can accommodate a plurality of user
devices 80 operated by different users at different times or
simultaneously. In the illustrated example, the user device
80 includes a controller 81, memory 82, a network interface
83 for connecting to the public network 90, and a display 84.
Executing on the controller 81 is a graph query and display
app 85, which generally receives user input (e.g., via input
mechanisms 66 such as a keyboard, mouse, and/or touch-
screen, among other examples) indicating configuration
information for the system 100 and/or queries and sends the

US 12,120,134 B2

13

configuration information and/or queries to the server sys-
tem 118. The graph query and display app 85 also receives
from the server system 118 information such as graph
information for rendering depictions of portions of the entity
relationship graphs 162 on the display 84 based on the graph
information, via a graphical user interface 87, which the
graph query and display app 85 renders on the display 84 for
receiving and displaying the configuration, graph query, and
graph information. In one example, the graph query and
display app 85 executes within a software program execut-
ing on the controller 81, such as a web browser, and renders
specifically a browser user interface 138 within a larger GUI
87 serving the graph query and display app 85, web browser,
and other applications and services executing on the con-
troller 81 of the user device 80.

In one typical example, as the event data is collected from
the data sources 12, it is used to generate the entity rela-
tionship graph 162 of all entities 8 of interest. This temporal
entity relationship graph 162 is typically displayed to IT and
security team users that access the server system 118 via a
browser executing on their own user device 80. This browser
user interface 138 displays a graphical user interface (GUI)
that presents graphs generated by the graph subsystem 126.
The server system 118, via the API 136, allows the users to
query the graph subsystem 126 for graph patterns of interest.

In general, in the stored and/or presented graphs 162,
individual entities 8 are modeled or represented as vertices,
or entity nodes 10. Attributes about the entities 8 can be
stored and/or presented as attributes on the entity nodes 10.
Relationships between entities 8 are modeled or represented
as edges 11 between the entity nodes 10. The edges 11 can
also have attributes or properties associated with them. The
stored graphs, presented graphs, entity nodes 10, and edges
11 will be described in further detail below with respect to
subsequent figures.

FIG. 1B is a schematic diagram showing an exemplary
computer system 50 for implementing any of the worksta-
tion system 112, the server system 118, and/or the user
device 80 illustrated in FIG. 1B.

The computer system 50 comprises a processing device
52, main memory 54 (e.g., read-only memory (ROM), flash
memory, dynamic random access memory (DRAM) such as
synchronous DRAM (SDRAM), etc.), and a static memory
56 (e.g., flash memory, static random access memory
(SRAM), etc.), which may communicate with each other via
adata bus 60. Alternatively, the processing device 52 may be
connected to the main memory 54 and/or static memory 56
directly or via some other connectivity means. The process-
ing device 52 may be a controller or used to implement a
controller (such as the controller 81 of the user device 80 or
any controllers of the workstation system 112 or the server
system 118), and the main memory 54 or static memory 56
may be any type of memory or may be used to implement
any type of memory systems (such as the memory 82 of the
user device 80, the data store(s) 164 of the server system
118, or any memory systems of the workstation system 112).

The processing device 52 represents one or more general-
purpose processing devices such as a microprocessor, cen-
tral processing unit, or the like. More particularly, the
processing device 52 may be a complex instruction set
computing (CISC) microprocessor, a reduced instruction set
computing (RISC) microprocessor, a very long instruction
word (VLIW) microprocessor, a processor implementing
other instruction sets, or processors implementing a combi-
nation of instruction sets. The processing device 52 is
configured to execute processing logic in instructions 68
(e.g., stored in the main memory 54, or in the processing

5

10

15

20

25

30

35

40

45

55

60

65

14

device 52 itself, or provided via the computer readable
medium 58) for performing the operations and steps dis-
cussed herein.

The computer system 50 may or may not include a data
storage device that includes instructions 68-3 stored in a
computer-readable medium 58. As previously mentioned,
the instructions 68 may also reside, completely or at least
partially, within the main memory 54 and/or within the
processing device 52 during execution thereof by the com-
puter system 50, the main memory 54 and the processing
device 52 also constituting computer-readable medium. The
instructions 68 may further be transmitted or received over
a network such as the public network 90 via a network
interface 62 (e.g., the network interface 83 of the user device
80, or any network interfaces of the workstation system 112
or the server system 118) of the computer system 50.

While the computer-readable medium 58 is shown in an
exemplary embodiment to be a single medium, the term
“computer-readable medium” should be taken to include a
single medium or multiple media (e.g., a centralized or
distributed database, and/or associated caches and servers)
that store the one or more sets of instructions 68. The term
“computer-readable medium” shall also be taken to include
any medium that is capable of storing, encoding, or carrying
a set of instructions for execution by the processing device
52 and that cause the processing device 52 to perform any
of one or more of the methodologies of the embodiments
disclosed herein. The term “computer-readable medium”
shall accordingly be taken to include, but not be limited to,
solid-state memories, optical and magnetic medium, and
carrier wave signals.

The embodiments disclosed herein include various steps
(to be described). The steps of the embodiments disclosed
herein may be performed by hardware components or may
be embodied in machine-executable instructions 68, which
may be used to cause a general-purpose or special-purpose
processing device 52 programmed with the instructions 68
to perform the steps. Alternatively, the steps may be per-
formed by a combination of hardware and software.

Those of skill in the art would further appreciate that the
various illustrative logical blocks, modules, circuits, algo-
rithms, apps, subsystems, services, engines and/or servers
described in connection with the embodiments disclosed
herein may be implemented as electronic hardware, instruc-
tions 68 stored in memory 54 or in another computer-
readable medium 58 and executed by a processor or pro-
cessing device 52, or combinations of both. Memory
disclosed herein may be any type and size of memory and
may be configured to store any type of information desired.
To clearly illustrate this interchangeability, various illustra-
tive components, blocks, modules, circuits, and steps have
been or will be described generally in terms of their func-
tionality. How such functionality is implemented depends
upon the particular application, design choices, and/or
design constraints imposed on the overall system. Skilled
artisans may implement the described functionality in vary-
ing ways for each particular application, but such imple-
mentation decisions should not be interpreted as causing a
departure from the scope of the present embodiments.

The various illustrative logical blocks, modules, circuits,
algorithms, apps, subsystems, services, engines and/or serv-
ers described in connection with the embodiments disclosed
herein may be implemented or performed with a processing
device 52, processor, a Digital Signal Processor (DSP), an
Application Specific Integrated Circuit (ASIC), a Field
Programmable Gate Array (FPGA) or other programmable
logic device, discrete gate or transistor logic, discrete hard-

US 12,120,134 B2

15

ware components, or any combination thereof designed to
perform the functions described herein. A controller may be
a processing device 52. A processing device may be a
microprocessor, but in the alternative, the processing device
may be any conventional processor, controller, microcon-
troller, or state machine. A processing device 52 may also be
implemented as a combination of computing devices, e.g., a
combination of a DSP and a microprocessor, a plurality of
microprocessors, one or more MiCroprocessors in conjunc-
tion with a DSP core, or any other such configuration.

It is also noted that the operational steps described in any
of the exemplary embodiments herein are described to
provide examples and discussion. The operations described
may be performed in numerous different sequences other
than the illustrated sequences. Furthermore, operations
described in a single operational step may actually be
performed in a number of different steps. Additionally, one
or more operational steps discussed in the exemplary
embodiments may be combined. It is to be understood that
the operational steps illustrated in the flow chart diagrams
may be subject to numerous different modifications as will
be readily apparent to one skilled in the art. Those of skill in
the art would also understand that information may be
represented using any of a variety of different technologies
and techniques. For example, data, instructions, commands,
information, bits, symbols, and chips that may be referenced
throughout the preceding or following description may be
represented by voltages, currents, electromagnetic waves,
magnetic fields or particles, optical fields or particles, or any
combination thereof.

Architecture

FIG. 1C is a schematic diagram of the exemplary entity
discovery, resolution, tracking, and remediation system 100
according to one embodiment of the present invention,
showing additional details about how data flows through
various components of the system.

In the illustrated example, the integration subsystem 168,
ingress subsystem 160, graph access service 246, tenant
service 172, schema service 170, rules engine 120, sched-
uling service 250, workflow engine 122, graph server 248,
and graph database 140 of the server system 118 are depicted
as part of a container-based system, specifically a Kuber-
netes cluster.

The graph server 248 maintains the entity relationship
graph 162 and any updates to it, or queries against it. It uses
a highly scalable graph database 140 as its backing store.

The graph access service 246 runs on the server system
118 and is the primary way that other systems or compo-
nents, both internal and external (e.g. a user interacting with
the web-based user interface 138 or a remote program
accessing the graph 162 via the API 136) gain access to the
graph server 248 for the purposes of updating or querying
the graph 162.

The tenant service 172 runs on the server system 118 and
is responsible for managing, creating, updating, deleting and
providing information about separate tenants in a multi-
tenant version of the system 100.

The rules engine 120 is responsible for responding to
changes in the graph 162 which, based on configuration,
should trigger some action, such as executing a workflow. It
receives information about changes in the graph 162 from
the graph access service 246. When a change triggers a rule
it then executes the associated action(s) such as interacting
with the workflow engine 122 to invoke the appropriate
workflow. The rules engine is also capable of executing
user-defined or system-defined scripts written in a scripting

10

15

20

25

30

35

40

45

50

55

60

65

16

language such as Javascript or Python. In some cases, the
rules engine 120 may access the graph server 248 directly to
collect more information.

The workflow engine 122 runs on the server system 118
and is responsible for running and managing stateful work-
flows which are provided with the system and/or created by
users of the system. The workflow engine 122 interacts with
the integrations subsystem 168 to invoke interactions with
external systems 70 pertaining to the computer environment
5 for the purpose of collecting or enriching event data or
invoking remediation actions and making changes to the
environment 5, to name a few examples.

The scheduling service 250 is responsible for managing
and executing a variety of recurring scheduled tasks. Gen-
erally, a recurring scheduled task will entail a query to
identify a set of entities 8 represented in the entity relation-
ship graph 162 that require some action and the specific
action to take. One example of a recurring scheduled task
would be the periodic execution of a query against the graph
162 to identify entities 8 that are out of compliance with
some policy. The action might be to execute a worktflow on
the entities 8 returned by the query, where the workflow
notifies some person(s) to take some action, or the workflow
executes some automated action by calls to APIs of other
software programs within or related to the computer envi-
ronment 5 to remediate the policy violation. The scheduling
service 250 interacts with the graph server 248, either
directly or via the graph access service 246, to access the
schedule configuration data. The scheduling service 250 also
interacts with the workflow service, and possibly other
components, to execute the configured actions.

FIG. 2 is an illustration of an exemplary graph segment
150 that would be presented to IT personnel, for example, as
part of the GUI 87 and/or browser user interface 138
rendered on the display 84 of the user device 80. Addition-
ally, the illustrated example also shows generally how the
entity relationship graph 162 stored in the graph database
140 is logically organized (e.g., with nodes 10 representing
entities 8 of the computer environment, edges 11 between
the nodes 10 representing relationships between the entities
8 represented by the nodes 10), and additional properties and
attributes associated with both the nodes 10 and the edges
11. The nodes are displayed as boxes including name in an
upper portion of the box and characteristics of the entity in
a lower portion of the box. The edges are lines between
boxes.

In general, different types of nodes 10 are depicted,
including person nodes 10-a representing individuals such
as users that are considered entities 8 in the computer
environment, AWS instance nodes 10-b, representing AWS
server instances in the computer environment, datacenter
nodes 10-c¢ representing a data center in the computer
environment 5, software nodes 10-d representing software
executing within the computer environment 5, vulnerability
scan nodes 10-e representing particular scans for vulner-
abilities performed with respect to the computer environ-
ment 5 (e.g., at a particular point in time), database nodes
10-f representing databases within the computer environ-
ment 5, vulnerability finding nodes 10-g representing results
of the vulnerability scans, and CVE nodes 10-% representing
publicly available security flaws that pertain to the computer
environment 5.

Similarly, different types of edges are depicted, including
has-access edges 11-a indicating that certain entities such as
users have access to other entities such as the AWS
instances, manages edges 11-b indicating that certain indi-
viduals that are considered entities 8 in the computer envi-

US 12,120,134 B2

17

ronment 5 are managers for other individuals, owns edges
11-¢ indicating that certain people who are considered
entities 8 within the computer environment are owners of
other entities 8, location edges 11-d indicating where certain
entities 8 are physically or geographically located with
respect to another entity 8, susceptible edges 11-e indicating
that certain entities 8 are susceptible or vulnerable with
respect to other entities 8 representing security vulnerabili-
ties withing the computer environment 5, identifies edges
11-f indicating that certain entities 8 provide identification
information with respect to other entities 8, and has-installed
edges 11-g indicating that certain entities 8 such as an AWS
instance has another entity 8 installed on it.

In a display context, each of the nodes 10 and edges 11 of
the graph segment 150 would be represented by graphical
elements (e.g., icons or shapes) displayed as part of the GUI
87. In one example, visual characteristics of the graphical
elements representing the nodes 10 and the edges 11 corre-
spond to the visual characteristics of the nodes 10 and edges
11, respectively, as they are depicted in the illustrated
example, with graphical elements representing the nodes 10
being displayed as rectangular shapes enclosing textual
information indicating values assigned to properties of the
nodes, and graphical elements representing the edges 11
being displayed as arrows connecting the graphical elements
representing the nodes 10 with textual information adjacent
to the arrows indicating values assigned to properties of the
edges 11.

In the illustrated example, the graph segment 150 presents
a situation of a computer entity 8 represented as node 10-5
in the graph segment 150. The computer node 10-6 could
have attributes recording information such as the make/
model of the computer, its operating system (e.g., repre-
sented by node 10-d), the time of its last restart, etc. There
may also be users (e.g., represented by nodes 10-a-1, 10-a-2,
and 10-¢-3) interacting on the computer network. Each user
is represented as a node 10-a in the graph segment 150, for
example, with attributes such as their user id, email address,
phone number, etc. If a user logs into the computer over the
network this can be represented in the graph segment 150 as
an edge of type logged_into from the user node to the
computer node (not illustrated). This is a very simplistic
example relative to normal operating conditions to be
expected for the presently disclosed system 100. For
example, in a normal situation there will typically be many
different entities 8 of interest with long sequences of rela-
tionships represented by long sequences of nodes 10 and
edges 11.

It could be the case that there are several data sources 12
that have information about the same entity 8. Some
examples of the data sources 12 include, but are not limited
to, public cloud infrastructure, identity and access manage-
ment products, vulnerability scanning products, endpoint
management products, SIEM products, ticketing systems,
networking infrastructure, network firewalls, etc. In some
cases, that information from different data sources 12 about
the same entities 8 will be non-overlapping and additive. In
some cases, the information might be conflicting.

In one embodiment, the ingestion engine 114 operates
according to configurable rules for dealing with joining the
event data from different data sources 12 and/or resolving
conflicting information from different sources 12 as col-
lected by the entity event collectors 110 and then storing the
result in the entity relationship graph 162 and underlying
relational database 140 of the graph subsystem 126. In
another embodiment of the present system and method, the
information from each data source 12 can be stored inde-

20

30

35

40

45

50

55

18

pendently, and any combining or conflict resolution is
invoked at run time as the information is being queried.

FIG. 3 is a schematic diagram showing a possible con-
figuration for collection, normalization, and rationalization
of data, with reference to steps of a data collection, normal-
ization, and rationalization process performed by the
depicted configuration, according to an embodiment of the
present invention. Specifically, in step 300, the data sources
12 are interrogated by the entity data collectors 110 for event
data. In step 302, the event data is received by the ingestion
engine 114 which then performs entity data normalization
and rationalization by applying a set of programmed rules
210, which, in one example, are configured based on input
from the user received via the GUI 87 of the user device 80
and stored in the data store(s) of the server system 118. The
normalized and rationalized event data is then sent to the
entity relationship graph subsystem 126 in step 304 and
stored by the entity relationship graph subsystem 126 in the
underlying relational database 140 in step 306. Finally, in
step 308, the entity relationship graph 162 stored in the
graph database 140 is then accessed by the graph query
processor and interface 132, for example, in response to
queries generated and transmitted to the server system 118
by the user device 80.

FIG. 4 is a schematic diagram showing a possible con-
figuration for collection, normalization, and rationalization
of data, with reference to steps of a data collection, normal-
ization, and rationalization process performed by the
depicted configuration, according to an embodiment of the
present invention. Specifically, in step 400, entity data
collectors 110 receive the event data from the data sources
12 and, in step 402, provide the event data to the entity
relationship graph subsystem 126 to be maintained by the
entity relationship graph subsystem 126 as the entity rela-
tionship graph 162 stored in the graph database 140 in step
404. In step 406, the graph query processor and interface 132
applies the entity data normalization and rationalization
rules 210 to the data generated by the various entity data
collectors 110 and/or stored in the graph database 140 in
order to provide an aggregated result view, which is dis-
played, for example, on the GUI 87 of the user device 80.

The disadvantage of storing the event data from each data
source 12 separately (as described above with respect to the
embodiment illustrated in FIG. 4) is that it involves storing
much more data and, depending on the graph implementa-
tion, more nodes in the entity relationship graph 162. On the
other hand, the advantage is that if the efficacy, credibility or
applicability of any of the data originating from particular
data sources 12 changes, these efficacy, credibility, and/or
applicability changes can be accounted for by configuring or
re-configuring the logic (e.g., normalization and rationaliza-
tion rules 210) used to normalize and rationalize the data.
Such configuration changes become effective immediately
for all entities 8 including those added to the graph 162 in
the past. It also enables the user of the system to build an
understand of why entities 8 and their attributes are what
they are and assess the efficacy and value of each source 12
in identifying and quantifying entities and their relationship.

In embodiments, there is typically a separate entity event
collector 110 for each source 12 of event data. However, one
entity event collector 110 can also work with several sources
12 to further enrich, validate, correlate and refine the infor-
mation before using it to update the graph 162. An entity
event collector 110 can be configured operate in any of
several ways depending on the nature and capabilities of the
source(s) 12 it is collecting the event data from.

US 12,120,134 B2

19

FIG. 5 is a schematic diagram showing a possible con-
figuration for collection of data, with reference to steps of a
data collection process performed by the depicted configu-
ration. In the exemplary mode of operation illustrated, the
entity event collector 110 performs the batch load operation
in step 500, which, for example, would be very typical when
the data source 12 is first being accessed, and the system 100
needs to complete an initial collection of all existing event
data from the source. This batch load would typically be
accomplished by the entity collector using the APIs 13 of the
data source 12 system. These APIs 13 could be any pro-
grammable interfaces appropriate for collecting metadata
that describes conditions within the computer environment
5, and might include REST APIs, programmatic access to
logging information, and database interfaces (e.g. SQL),
among other examples. In some cases, the entity event
collector 110 retrieves from a primary data source 12-p all
of the contextual event data needed to effectively update the
entity relationship graph 162 in steps 504 and 506. In other
cases, the entity event collector 110 determines a need to
perform enrichment of the event data collected from the
primary data source 12-p by proactively acquiring additional
event data and, in response, acquires the additional event
data in step 502 by further querying the primary data source
12-p and/or some other data sources 12-o, via the respective
APIs of the data sources 12.

FIG. 6 is a schematic diagram showing a possible con-
figuration for collection of data, with reference to steps of a
data collection process performed by the depicted configu-
ration. Generally, the illustrated example shows how col-
lecting the event data from the different data sources 12
comprises selectively retrieving only event data indicating
the relevant changes to the computer environment 5 in
response to alerts 14 transmitted by the data source 12,
according to another embodiment of the present invention.
More specifically, the illustration shows steps performed
with respect to collecting the event data in response to alerts
issued by the data source(s) 12, with reference to the
hardware and/or software components relevant to each step.
The data source 12 generates alerts 14 in step 600 in
response to new event data of interest becoming available
and sends the alerts 14 to an alert queue 15. In step 602, the
entity event collector 110 monitors the alert queue 15,
which, in one example, is a built-in component and/or
capability of the data source 12 or, alternatively, an inde-
pendent queue system including systems such as notification
services and/or email or chat technologies. Regardless of the
queueing mechanism, the entity event collector 110 retrieves
the alerts 14 from the alert queue 15 and then processes the
alerts 14. As before, in some cases, the alerts 14 include all
of the contextual event data needed for the entity event
collector 110 to effectively update the entity relationship
graph 162 in steps 606 and 608. In other cases, the entity
event collector 110 determines a need to perform enrichment
of'the event data collected from the primary data source 12-p
by proactively acquiring additional event data and, in
response, acquires the additional event data in step 604 by
further querying the primary data source 12-p and/or some
other data sources 12-o, via the respective APIs of the data
sources 12.

FIG. 7 is a schematic diagram showing a possible con-
figuration for collection of data, with reference to steps of a
data collection process performed by the depicted configu-
ration. Generally, the illustrated example shows how col-
lecting the event data from the different data sources 12
comprises selectively retrieving only event data indicating
the relevant changes to the computer environment 5 by

10

15

20

25

30

35

40

45

50

55

60

65

20

periodically polling a data source 12 for new event data
reflecting the relevant changes, according to another
embodiment of the present invention. More specifically, the
illustration shows steps performed to periodically poll the
data source(s) 12, with reference to the hardware and/or
software components relevant to each step. In this third
illustrated mode of operation, the entity event collector 110
periodically polls the source 12 in step 700, typically via the
API 13, looking for new event data indicating relevant
changes. The polling frequency is adjusted based on the
characteristics of the data source 12 and the nature of the
event data available from that data source 12. As in the other
modes, the collector 110 may receive all of the contextual
information needed for the entity event collector 110 to
effectively update the entity relationship graph 162 in steps
704 and 706. In other cases, the entity event collector 110
determines a need to perform enrichment of the event data
collected from the primary data source 12-p by proactively
acquiring additional event data and, in response, acquiring
the additional event data in step 702 by further querying the
primary data source 12-p and/or some other data sources
12-0, via the respective APIs of the data sources 12.
Schema Definition and Schema Service

The presently disclosed system and method is configured
to consume user-specified type definitions, for example,
according to a computer-readable schema definition lan-
guage and format built on and extending standards such as
JSONSchema and OpenAPI (for example). This schema
definition language supports the definition of details about
each entity type including, among other things, what attri-
butes the entity type can, or must, include and what other
entity types it can, or must, have relationships to.

Accordingly, the entity event collectors 110, ingestion
engine 114, and/or the entity relationship graph subsystem
126, in conjunction with the schema service 170 generate the
entity relationship information, including the entity relation-
ship graph 162, based on predetermined and/or user-speci-
fied type definitions formatted according to the declarative
schema definition language, the type definitions including
markup specifying particular properties and relationships for
different entity types such as those described above.

In this way, the graph segments 150 displayed as part of
the GUI 87 and/or browser user interface 138 reflect the
properties and relationships defined via the type definitions,
as do the query building features provided via the graph
query and display app 85, which will be described below in
additional detail with respect to subsequent figures.

FIG. 8 is an illustration of an exemplary type definition
screen of the GUI 87 rendered on the display 84 of the user
device 80 showing an exemplary type definition for an entity
type according to one embodiment of the present invention.
In general, the type definition comprises a series of attribute
fields nested at various levels with respect to each other, with
each attribute comprising a textual label and a value indi-
cating a data type expected to be associated with the label in
instances of nodes 10 representing actual entities 8 having
the entity type defined by the type definition.

In the illustrated example, the type definition is for an
entity type with a name of “machine,” indicating that the
entity type is associated with machines within the computer
environment 5.

Additionally, the illustrated example shows the type defi-
nition as it might be displayed in an integrated development
environment (IDE) or text editor software application
enabling the user of the user device 80 to create and edit the
type definitions via the input mechanisms 66 of the user
device 80 such as a keyboard or touchscreen display. In this

US 12,120,134 B2

21

way, the type definitions enable customization by the user of
entity types specific to the computer environment 5 and/or
organization managing the computer environment 5.

The entity types, and the schema definition language,
support a multiple-inheritance model such that an entity type
can inherit from, or implement the fields from, another entity
type and then include additional attributes or valid cross-
entity relationships. Every entity type is described using this
schema definition language.

FIG. 9 is an illustration of an exemplary graph display
screen 800 of the GUI 87 rendered on the display 84 of the
user device 80, showing how graph segments 150 resulting
from queries executed against the entity relationship graph
162 are presented to the user of the user device 80. More
particularly, the graph segment 150 depicted in the illus-
trated example corresponds to the type definition depicted in
FIG. 8.

In general, the GUI 87 comprises various screens that
communicate information to the user via graphical elements
such as textual information and/or recognizable icons
arranged in different positions with respect to each other and
the various panes and windows of the GUI 87 containing the
graphical elements in such a way as to convey meaningful
information based on the particular spatial arrangement
and/or indicated text or symbols. Other graphical elements
provided in the various screens of the GUI 87 enable the user
to input information by interacting with the graphical ele-
ments displayed as part of the GUI 87 in various ways (e.g.,
using input devices 66 such as a keyboard, pointing device
or mouse. and/or interactive virtual buttons or keys rendered
on a touchscreen display to input text, manipulate a cursor
for pointing at graphical elements, indicate selections of
graphical elements via buttons of the pointing device such as
the mouse, and indicate gestures such as highlighting or
dragging and dropping graphical elements such as icons or
characters contained within a selection region and/or indi-
cated by the cursor, among other examples). The graphical
elements include virtual buttons, which are generally dis-
played in the screens as shapes or oblongs, sometimes with
recognizable symbols or text indicating the functions of the
virtual buttons.

More specifically, the graph display screen 800 comprises
a graph pane 802 for displaying a graph segment 150, which
commonly would be generated by the entity relationship
graph subsystem 126 based on and in response to queries
received via input from the user received by the user device
80 via the input devices 66 and returned to the user device
80 for display. The graph pane 802 displays the graph
segment 150 as a series of graphical elements 808, 810, 812
representing various entities 8 and relationships between the
entities. The graphical elements 808, 810, 812 have different
visual characteristics based on and indicating whether they
represent nodes 10 of the graph 162 (and thus entities 8 of
the computer environment) or edges 11 of the graph 162
(and thus relationships between the entities 8). For example,
the node elements 808, 810 represent the nodes 10 (and/or
entities 8), while the edge elements 812 represent the
relationships between the nodes 10 (and/or entities 8).
Additionally, the node elements 808, 810 have visual char-
acteristics based on and indicating distinct node types. These
node types can correspond to entity types defined via the
type definitions and/or logical roles of the nodes 10 repre-
sented by the node element 808, 810 in the context of the
entity relationship graph 162 or even simply in a display
context pertaining to operation of the graph query and
display app 85. For example, node elements 808, 810 might
contain different symbols (e.g., centered within the circular

10

15

20

25

30

35

40

45

50

55

60

65

22

shapes defined by the graphical elements), be displayed in
different hues, and/or be displayed having different shapes or
sizes based on different entity types defined via the type
definitions, arguments provided as part of the query that
originated the graph segment 150 for targeting particular
results, and/or viewing preferences specified locally within
the graph query and display app 85.

Generally, however, the graph segment 150 is displayed
as circular node elements 808, 810 connected to each other
by the edge elements 812, which are displayed as line
segments with one end contacting a point on a perimeter of
one node element 808, 810 and the other end contacting a
point on the perimeter of another node element 808, 810.

The resulting graph segment 150 in the illustrated
example comprises three relatively prominently featured
primary node elements 808-1, 808-2, 808-3 representing
nodes 10 and/or entities 8 having the entity type defined in
the type definition depicted in FIG. 8, each connected via a
plurality of edge elements 812 to a plurality of relatively less
prominently featured secondary node elements 810 repre-
senting nodes 10 and/or entities 8 having different entity
types such as those defined as indicating attributes or
properties of the more prominent nodes 808 or as represent-
ing types of entities 8 having only a secondary relevance to
the security of the computer environment 5.

Some of the secondary node elements 810 have mutual
connections to more than one of the primary node elements
808, forming relationship sequences connecting the primary
node elements 808 to each other via the secondary node
elements 810 and the intervening edges 812.

The graph pane 802 further comprises a series of direc-
tional buttons 804 for panning a view of the graph segment
150 in different directions to reveal different portions of the
graph segment 150 that are not shown in the graph pane 802
and are depicted as being positioned and/or moving outside
of the viewable region contained within the graph pane 802.

Similarly, the graph pane 802 further comprises a series of
zoom buttons 806 for zooming the view of the graph
segment 150 in and out, bringing into focus particular
regions of the graph segment 150 resulting in other regions
not being shown in the graph pane 802 and being depicted
as being positioned and/or moving outside of the viewable
region contained within the graph pane 802.

The graph display screen 800 further comprises a graph
view button 814 and a table view button 816. In response to
selection of the graph view button 814, the GUI 87 displays
the graph segment 150 graphically as depicted in the illus-
trated example, via the previously described node elements
808, 810 and edge elements 812. In response to selection of
the table view button 816, the GUI 87 displays underlying
entity relationship information on which the graph segment
150 is based in a table format (not illustrated).

FIG. 10 is an illustration of an exemplary command line
interface of the GUI 87 rendered on the display 84 of the
user device 80 showing an exemplary command line utility
configuring the presently disclosed system 100 by importing
new or edited entity type definitions determining how the
system collects and/or enriches the event data, generates the
entity relationship information and/or graph 162, constructs
queries, and/or displays query results, among other
examples. In the illustrated example, the system 100 is a
multi-tenant system, and a new type having a type definition
in a file on the filesystem “~/types/MyCustomType.yaml” is
being loaded into a tenant called “ar02”.

In existing schema definition languages, it is common to
declare the structure and constraints of a datatype. In the
context of the presently disclosed system and method,

US 12,120,134 B2

23

however, additional concerns include how to relate data
from multiple systems and applications from independent
vendors and how to describe relationships between data
elements in a way that supports graph-based query and
display techniques. Consequently, the schema definition
language includes explicit markup fields that define relations
to external types. This allows data corresponding to this
schema to be automatically transformed from an object
representation into a graph representation.

Commonly, descriptions of existing enterprise application
data and interfaces are available in JSONschema or
OpenAPI format. This schema language allows definition of
graph-specific markup, including relationships, constraints
and derived properties, using the same schema language.

FIG. 11 is an illustration of an exemplary type definition
according to one embodiment of the present invention,
showing how a publicly available reference schema has been
extended according to the presently disclosed system and
method.

FIG. 12 is an illustration of an exemplary table display
screen 820 of the GUI 87 rendered on the display 84 of the
user device 80, showing how entity relationship information
resulting from queries executed against the entity relation-
ship graph 162 are presented to the user of the user device
80 specifically in a table format. The GUI 87 displays the
table display screen 820 in response to selection by the user
of the table view button 816 of the graph display screen 800.
Conversely, the graph display screen 800 is displayed in
response to selection of the graph view button 814 on the
table display screen 820. The table display screen 820
comprises a query pane 822, a table pane 824, and a details
pane 826. The query pane 822 includes a textual represen-
tation of the query that was executed against the entity
relationship graph 162 to generate the entity relationship
information displayed in the table pane 824. The table pane
824 comprises a series of graphical elements representing
lines in a table, each of which represents a different entity 8.
Column headers of the table pane 824 indicate attribute
labels for a series of columns, with textual information on
each line of the table, within the graphical element repre-
senting the line in the table, indicating values assigned to
each of the attributes. In response to selection of any of the
graphical elements for each of the lines of the table, the GUI
87 displays in the details pane 826 additional, detailed
attribute information.

In the illustrated example, the query pane 822 indicates
that the query targeted entities of type “cisco.amp.com-
puter.” This entity type does not define a property called “Id”
but instead inherits the property from the entity type
“Machine,” which the “cisco.amp.computer” entity type
extends.

Similarly, FIG. 13 illustrates an exemplary entity type
hierarchy according to an embodiment of the present inven-
tion, showing how special entity types specific to particular
data sources inherit and/or extend the properties and rela-
tionships of other entity types according to the specified
entity type hierarchy, with the special entity types specifying
additional properties and relationships specific to the par-
ticular data sources.

More particularly, the present system and method incor-
porate a comprehensive hierarchy of default entity types
which are appropriate for the general cybersecurity problem
domain. This hierarchy of default cybersecurity entity types
are included when an instance of the system is initially
installed or deployed. However, in many cases there are
organization-specific variations in the types of entities which
need to be tracked in the system. This can commonly happen

10

15

20

25

30

35

40

45

50

55

60

65

24

as cybersecurity technologies advance and new concepts
emerge or when an organization integrates information from
a new data source 12 in their environment 5 which provides
insights on entities not sufficiently supported by the existing
default entity types. For this reason, the present system and
method supports the ability for additional types to be defined
and imported into the system. This capability includes
creating entirely new entity types or extending existing
built-in or custom entity types. In this way, the system is
easily extensible to support any entity types and use cases
the specific organization requires. Once new types are
imported into the system the schema definition allows the
rest of the system to understand how to interact with entities
of that type. This allows them to be supported just like the
built-in types in every respect.

As previously mentioned, the schema service 170 is
responsible for consuming schema definitions, validating,
and storing them. Also, through the schema service the
entity type schema can be accessed and used by various
other aspects of the present system and method. In one
example, when a new entity 8 is discovered the entity event
collector 110 interrogates the entity type via the schema
service 170 to ensure the entity attributes are collected,
valid, and recorded properly. The entity event collector 110
also uses this understanding of the entity type schema to
recognize, resolve and validate references to other related
entities 8. When an entity 8 or relationship is being added to
the graph 162 the system validates that the entity 8 or
relationship meets the requirements of the associated entity
type to ensure data integrity. Similarly, when the GUI 87 is
displaying information about a particular entity 8, it can
interrogate the schema service 170 to collect information
that is helpful in making decisions regarding how to display
the information. When a user is trying to generate a graph
pattern query against the graph 162, the GUI uses informa-
tion about the entity type schema to guide the user through
the query generation process by only offering options which
are supported by the schema of the types involved. There are
many other examples of ways the entity type definitions can
be used improve the capabilities of the present system and
method.

Graph Querying

The present system and method presents a GUI 87 and
API 136 for executing graph queries via the graph query
interface 132 against the entity relationship graph 162,
among other examples. By organizing the information in a
graph and exposing a graph query interface 132 the present
system and method provides a convenient and effective way
to extract insights based on transitive relationships which
would otherwise be difficult to assess. For example, most
organizations today attempt to keep track of IT assets in their
computer environment 5 and have some way of categorizing
them based on criticality, development/test/staging/produc-
tion status, etc. They also generally have a process for
scanning and tracking the vulnerabilities associated with
their assets, at least their most critical ones. They can fairly
easily answer the question, “Which database servers housing
classified data are currently susceptible to critical vulner-
abilities?” because they have classified their database serv-
ers, and they have vulnerability data indexed by system. This
is clearly an important question, as having a production
system holding sensitive customer or credit card data that is
also susceptible to a known vulnerability represents a sig-
nificant risk to the business. However, given the complex
architecture and interactions of modern software systems,
this approach is no longer sufficient. A database server
within a computer environment can be completely patched,

US 12,120,134 B2

25

but if the database server is being accessed by another
application that is exposed to the internet and not patched,
the resulting vulnerability is just as dangerous, if not more
s0. Thus, for modern systems, it is important to also be able
to answer the question, “Which applications have access to
databases containing classified data and are also comprised
of components which are currently susceptible to critical
vulnerabilities?”” Without an understanding of the complex
relationships between systems, software, network topology,
users, vulnerabilities, etc., this latter question is very difficult
or even impossible to answer. However, by capturing all of
the entities in question via the collected event data and their
associated relationships in graph form, and by exposing a
mechanism to issue graph traversal or graph pattern queries,
the presently disclosed system and method provides answers
to these more complicated relationship-based questions effi-
ciently.

Rules

As previously mentioned, the present system and method
comprises the rules engine 120 for configuring and execut-
ing a multitude of rules. Each of the rules comprise specified
conditions and specified actions.

FIG. 14 is a schematic diagram of the rules engine 120
according to an embodiment of the present invention, show-
ing how managing the computer environment 5 based on the
entity relationship information (e.g, the entity relationship
graph 162) according to the presently disclosed system and
method comprises configuring the rules engine 120 with
user-specified rules for detecting specified conditions of the
entities 8, properties of entities, and relationships between
entities indicated by the entity relationship information and
for performing specified actions in response to detecting the
specified conditions.

The specified rule conditions of the rules are graph pattern
queries that are predetermined and/or created and/or con-
figured by the user and are intended to detect specified (e.g.,
by the users) conditions of the entities, properties of entities,
and relationships between entities indicated by the entity
relationship information or graph 162. Conditions can be
responsive to, among other things, changing situations in the
graph. Conditions can specify arbitrarily complex logic
based on, but not limited to, any combination of the follow-
ing;

nodes 10 or edges 11 appearing or disappearing from the

graph;

nodes 10 or edges 11 that have, or fail to have, one or

more particular attribute values;

nodes 10 or edges 11 that have a path to, or fail to have

a path to, one or more other nodes 10 of a particular
type and/or that have or fail to have a particular
attribute value; and

elapsed time or reaching a particular point in time.

A rule is considered “triggered” whenever the result set
returned from the query for its condition graph pattern
changes or whenever the attributes on any node or edge
returned by the query changes. It is expected that changes
will happen frequently in a large graph modeling a large
enterprise. Similarly, it is expected that organizations create
a large number of rules. For this reason, it is often not
practical to query for every rule condition every time there
is any change in the graph.

As a result, the present system and method incorporate a
mechanism to first determine if a given change in the graph
has the potential to change the result of a given rule
condition.

FIG. 15 is a flow diagram illustrating exemplary steps
performed according to rule evaluation logic for identifying

10

15

20

25

30

35

40

45

50

55

60

65

26

which rules of the rules engine 120 can potentially be
triggered by detected changes in conditions indicated by the
entity relationship information and selectively evaluating
the changed conditions against the specified conditions only
with respect to the rules that were identified as potentially
being triggered by the detected changes in the conditions.
For example, in step 1200, the entity relationship graph
subsystem 126 generates a change alert indicating that one
or more changes have been made to the entity relationship
graph 162. In step 1202, the graph access service 246 sends
information concerning the change to the rules engine 120.
In step 1204, the rules engine identifies which rules, if any,
the change could potentially affect. In step 1206, the rules
engine 120 re-executes the query representing the specified
conditions for only the identified rules determined to be
potentially affected by the change. In step 1208, the rules
engine 120 compares the result of the query for the specified
conditions of the rule with a previously cached result
generated from the same query. In step 1210, it is determined
whether the query result from the re-executed query has
changed with respect to the cached query result. If not, the
process ends in step 1216. On the other hand, if the re-
executed query did change, the rules engine 120 executes the
specified actions for each change in step 1212, updates the
cache in step 1214, and then the process ends in step 1216.
In this way, if a change to the entity relationship graph 162
involves modifying the value of an attribute on a node 10
representing an entity 8, if a rule’s condition graph pattern
does not explicitly reference that modified attribute, the
change is determined to have no impact on the result of the
query representing the specified conditions of the rule, and
the change can be ignored for that rule.
Actions within a rule are also predetermined and/or
configured by the user and are executed in response to
detecting the specified conditions of the rule(s), for example,
whenever the rule conditions are met by the rules engine.
Actions include executing user-defined operations with
respect to the computer environment, including, but not
limited to, one or more of the following;
running a program or script (e.g., user-configurable soft-
ware programs to perform the user-defined operations);

launching a workflow (e.g., user-configurable workflows
provided by the workflow engine 122 executing the
user-defined operations, which can be configured to
invoke other workflows or software programs, as dis-
cussed in further detail later in this document); and

directly manipulating/modifying entities and their attri-
butes and relationships in the entity relationship graph
162.

The present system and method incorporate a mechanism
through which a user of the system can create their own
programs, scripts, workflows or graph manipulation logic
which meet their specific use cases requirements. When a
program, script, workflow or graph manipulation logic is
executed as a result of a rule triggering it will be provided
with the context of the rule which was triggered, and the
details of the specific changes in the query results associated
with the rule triggering. They can also independently query
the graph for additional information and context as needed.

One of the primary purposes of a program, scripts,
workflows or graph manipulation logic executed as the
result of a rule being triggered is to perform automated
activities to collect additional information to enrich the
information indicated in the entity relationship graph 162. In
one example, a new compute node being discovered triggers
the execution of an nmap scan of the compute node to
determine information about what IP ports the node is

US 12,120,134 B2

27

listening on. Additionally, another specified action might
include invoking a vulnerability scan using a third-party
vulnerability scanning product or tool to determine which
known software vulnerabilities the node is susceptible to or
querying a cloud service API to collect additional attributes
about the node. Another specified action might include
executing a custom program or tool or even launching a
workflow which interacts with people via some electronic
communication mechanism such as email or chat. Other
actions might be intended to employ a program, script or
workflow executed as the result of a rule being triggered to
perform automated activities to manipulate entities 8 to
bring them, or the overall environment 5, into compliance
with some desired state.

FIG. 16 is a state diagram showing how actions resulting
from organic changes to the computer environment 5 such as
those described above could result in additional attribute and
relationship data being added to the graph 162 and/or actions
performed to manipulate the computer environment 5,
which could, in turn, trigger other rules. In step 1300,
organic changes to the environment occur and are reflected
in the collected event data and the entity relationship graph
162 in step 1302. In step 1304, the changes to the graph 162
are detected, resulting in rules being triggered by the rules
engine 120 in step 1306. In step 1308, the triggered rules
result in specified actions for the rules being performed by
the rules engine 120. These actions might include updating
the entity relationship graph in step 1310, in which case the
graph change is again detected in step 1304, triggering
further rules, and so forth. The actions executed in step 1308
could also effect changes or manipulation in the computer
environment 5 in step 1312, in which case these environ-
mental changes causes changes to the entity relationship
graph 162, which are then detected, triggering further rules,
and so forth.

As an illustrative example, consider the desire to have a
particular endpoint security agent installed on all compute
nodes on a specific network subnet. A rule could be created
where the condition detects any entities of type Com-
puteNode which have a relationship path to the correspond-
ing entity of type NetworkSubnet representing the specific
subnet in question, and where the ComputeNode entity also
does not have an attribute (or relationship, depending on
how it is modeled) indicating the presence of the desired
endpoint security agent. When this condition is triggered the
corresponding action could be to execute an Ansible, or
some other, script designed to install the desired endpoint
agent. Any conceivable fully automated or human involved
process could be substituted into this example.

The present system and method can further employ the
concept that actions can not only be executed from rules but
can also be manually invoked by users of the system. In this
mode of operation, the user interacts with the system 100
through a user interface such as the browser user interface
138 and/or the GUI 87. The user interface will present the
user with a mechanism (e.g. via some gesture such as a
button click) to manually invoke actions including executing
a program, script or workflow. The logic to decide when and
how a given action should be exposed within the user
interface is configurable.

Workflows

The present system and method can further incorporate a
subsystem for configuring and executing a multitude of
workflows by the workflow engine 122. Workflows allow
users to define, typically through the a graphical drag-and-
drop interface (e.g., presented as part of the GUI 87 of the
user device 80), an arbitrarily complex set of branching logic

10

15

20

25

30

35

40

45

50

55

60

65

28

for executing ordered actions as specified and organized in
the workflow. Workflows are stateful, meaning that they
accumulate state information as they progress, and each step
along a path in a workflow is executed sequentially (e.g., one
step must complete before the workflow progresses to
execute the next step), with each step having access to the
accumulated state from previously executed steps. Each
workflow executed starts with the state information related
to the rule (or user in the case of manually invoked work-
flows) and associated entities related to its invocation. In
some examples, workflows include steps which invoke
actions including scripts, programs, or other workflows.
Workflows are particularly useful for combining many indi-
vidual actions together to implement higher-level functions
while remaining responsive to the specific details of each
situation. Workflows are also well suited for situations
involving asynchronous actions which may take a long time
to complete such as emailing a user a question and waiting
for them to reply before proceeding.

FIG. 17 is an illustration of an exemplary workflow
configuration screen 830 of the GUI 87 rendered on the
display 84 of the user device 80, showing how custom
workflows can be created and configured by the user.

The workflow configuration screen 830 comprises a
graphical workflow builder pane 832 and a step details pane
834. In general, the graphical workflow builder pane 832
enables the user to interact with various graphical elements
836, 838 representing portions of the workflow arranged in
different positions with respect to each other and the graphi-
cal workflow builder pane 832 in such a way as to graphi-
cally convey the operation of the workflow.

For example, a series of step elements 836, which are
graphical elements representing steps of the workflow are
arranged sequentially along a series of workflow paths,
indicated by lines connecting the step elements 836 with
each other in an ordered sequence corresponding to the
ordered sequence of steps to be performed in the actual
workflow. Each of the step elements contains textual infor-
mation providing an indication of what actions are to be
performed at each step. For example, step element 836-1 has
a label of “Remediate Vulnerabilities” indicating that actions
performed at that step are concerned with remediating
vulnerabilities within the computer environment 5 step
element 836-2 has a label of “Fan Out,” step element 836-3
has a label of “Rescan system” indicating that actions
performed at that step (e.g., by a third party security product
via the workflow engine 122) concern scanning one or more
entities 8 of the computer environment 5, step element 836-4
has a label of “Still vulnerable?” indicating an evaluation to
confirm whether a vulnerability remains after completion of
the preceding steps, and so forth.

As previously pointed out, each of the steps represented
by the step elements 836 can correspond to actions such as
execution of user-defined scripts, programs, or other work-
flows, among other examples, with the workflow engine 122
automatically driving execution of each step upon resolution
of the previous step.

Additionally, a series of branch evaluation indicators 838,
which are graphical elements representing possible evalua-
tion outcomes of certain of the steps represented by the step
elements 836, indicate which workflow path to take after
completion of a step based on the spatial position of the
branch evaluation indicators 838 on one or the other
branches of a forking path. For example, branch evaluation
indicator 838-1 has a label of “Already resolved?” and is
positioned on a branch of the workflow path subsequent to
the “Still vulnerable?” step element 836-4, and branch

US 12,120,134 B2

29

evaluation indicator 838-2 has a label of “Still Vulnerable”
and is positioned on the other branch of the workflow path
subsequent to the “Still vulnerable?” step element 836-4.
Accordingly, upon completion of the step represented by the
step element 836-4, the results of the evaluation to confirm
whether the vulnerability remains after completion of the
preceding steps determine whether the “Already Resolved?”
or the “Still Vulnerable” branch is taken in the workflow
path, based on the state information accumulated as a result
of completion of each step leading up to the two branches.

The workflow builder pane 832 comprises an add button
839 at the end of each branch. In response to user selection
of the add button 839, a new step element 836 is added to
the workflow builder pane 832, allowing the user to con-
figure the step as desired using the worktlow builder pane
832 and/or the step details pane 834.

The workflow builder pane 832 also allows drag and drop
interaction with the step elements 836 and/or the branch
evaluation indicators 838 (e.g., using an input device 66 of
the user device 80 such as a mouse or a touchscreen display).
In this way, the user can rearrange the graphical elements
836, 838 as desired and in so doing modify the sequence of
steps for the workflow.

The step details pane 834 comprises a series of data entry
fields 840, 842, 844, 846 enabling the user to specify details
for any of the steps represented by the step elements 836 in
the workflow builder pane in response to selection of the
step elements 836. The data entry fields include a label field
840 for adding or editing a label assigned to a step, a
description field 842 for adding or editing the description
assigned to a step, an input type field 844 for selecting an
input type for the step, and an add parameter button 846 for
adding parameters for data passed to the step upon execution
of the step.

User Interface

The present system and method further incorporates a
web browser-based user interface 138 displayed as part of
the GUI 87 of the user device 80. The browser user interface
138 enables the user of the system 100 to easily interact with
the system, for example, to execute queries against the entity
relationship graph 162 in order to retrieve entity relationship
information. The user interface will include the normal
functions of a typical web application including, but not
limited to, authentication, authorization and access control,
and other general configuration, etc. In particular, the pres-
ent system and method includes a user interface 138, 87
enabling the users to query and filter on the graph data set.
The query mechanism can be either manual (e.g., by typing
queries following a particular query language) or graphical
using a drag-and-drop user interface metaphor for building
queries.

FIG. 18 is an illustration of an exemplary relationship
between a query built using a graphical query builder and the
underlying raw query (in this case using a standardized
graph query language called OpenCipher). Query results are
typically displayed in either a tabular or graph format, as
demonstrated by the previously described table display
screen 820 and graph display screen 800, respectively. The
interface enables the user to sort and filter query results and
specify details of how graphical views are displayed (e.g.
graph depth, which node types to include). The information
is also accessible via the API 136 over a computer network
such as the public network 90.

FIG. 19 is an illustration of an exemplary query builder
screen 850 of the GUI 87 rendered on the display 84 of the
user device 80, how the presently disclosed system 100
includes a query builder that generates graph-based queries

35

40

45

30

based on input from a user via an input mechanism 66 of the
user device 80, transmits the graph-based queries for execu-
tion against the entity relationship graph 162, and displays
results of the graph-based queries.

The query builder screen 850 comprises a query pane 852.
In general, the query builder (implemented via the query
builder screen 850) generates the graph-based queries based
on the input from the user by displaying within a query pane
852 graphical elements 854, 856 representing entity types
and relationships in particular arrangements and generating
the graph-based queries based on the particular arrange-
ments of the graphical elements displayed in the query pane
852. In one example, the query builder generates the graph-
based queries based on the particular arrangements of the
graphical elements 854, 856 by translating the arrangements
of the graphical elements 854, 856 into a textual query in a
graph query language used by the graph database 140 and
transmitting the textual query for execution against the
entity relationship graph 162.

The query builder displays the graphical elements 854,
856 in the particular arrangements by, based on the input
from the user, adding and removing graphical elements 854,
856 to and from the query pane 852, assigning particular
entity types and relationships to the graphical elements 854,
856 displayed in the query pane, assigning particular prop-
erties to particular entity types represented by the graphical
elements 854, 856 displayed in the query pane, setting or
changing relative spatial positions of the graphical elements
854, 856 displayed in the query pane with respect to each
other, and/or setting or changing connections between pairs
of graphical elements 854, 856 displayed as adjacent to each
other in the query pane.

In order to generate the graph-based query, the query
builder screen 850 interprets the user-specified arrangements
of the graphical elements 854, 856 within the query pane
852 in a number of ways. For example, the query builder
screen 850 interprets selection by the user of which entity
types and relationships are represented by the graphical
elements 854, 856 displayed in the query pane 852 as
indicating entity types and relationships to be targeted in the
graph-based query. In another example, the query builder
screen 850 interprets selection by the user of particular
properties assigned to the particular entity types represented
by the graphical elements 854, 856 displayed in the query
pane 852 as indicating that information for entities having
the selected properties in the entity relationship graph 162 is
to be retrieved via the graph-based query. In yet another
example, the query builder interprets selection by the user of
spatial positions and connections between pairs of graphical
elements 854, 856 displayed in the query pane 852 as
indicating logical connections between the entity types and
relationships represented by the connected graphical ele-
ments 854, 856 to be targeted in the graph-based query.

More specifically, the query builder screen 850 imple-
ments the drag-and-drop user interface metaphor for build-
ing the queries. To that end, the query builder screen 852, via
the input mechanisms 66 of the user device 80, detects
gestures input by the user. The gestures indicate selection of
entity types and, for example, dragging of the graphical
elements 854, 856 representing the selected entity types into
the query pane 852.

Additionally, the query builder screen 850 displays the
graphical elements 854, 856 in the query pane 852 with
visual characteristics indicating whether the graphical ele-
ments 854, 856 represent entity types or relationships.
Similar to the graph display screen 800, the entity type
elements 854, which are graphical elements representing

US 12,120,134 B2

31

entity types, are displayed as shapes (in this case rectangles)
connected to each other by relationship elements 856, which
are graphical elements representing relationships and which
are displayed as line segments with one end contacting a
point on a perimeter of one entity type element 854 and the
other end contacting a point on the perimeter of another node
element 854.

In one example, the query builder screen 850 displays the
graphical elements 854, 856 in the query pane 852 with
textual information identifying the entity types and relation-
ships represented by the graphical elements 854, 856 and
properties assigned to the entity types and relationships
represented by the graphical elements 854, 856.

In another example, the query builder screen 852 auto-
matically determines and displays valid relationship paths
between the selected entity type elements 854, receives
input from the user indicating selection of which of the
displayed valid relationship paths to be referenced in the
graph-based query. Similarly, the query builder screen 852
also receives input from the user indicating selection of
specific valid properties for each displayed entity type
element 854 for selected entity types in order to further
quantify or limit graph patterns targeted via the graph-based
query.

Similarly, the query builder screen 850 limits selections
by the user for the graph-based queries to valid combina-
tions of entity types, relationships, and properties based on
the previously described type definitions specifying particu-
lar properties and relationships for each entity type in the
entity relationship information.

Graph State History

According to one embodiment of the invention, the graph
server 248 records the state of the entity relationship graph
162 as it changes over time. As the event data is collected via
the various means that have been previously described, and
as modifications are made to the graph 162 the system keeps
track of the changes and enables a user of the system to
query the graph based on its state at a particular point in time
in the past. This is extremely useful for certain IT and
cybersecurity use cases such as cybersecurity incident
response and cyber forensics use cases.

In one embodiment of the graph server 248, a history
tracking graph is generated. A time element for node attri-
butes is implemented by separating out the identity aspect of
an entity 8 (which is immutable) from the state aspect of the
entity 8, which includes all the mutable information about
the entity 8 such as its attributes. An example of immutable
data could be the unique id of the entity 8 in the system 100
or the entity type, while examples of mutable data that could
change over time might be the patch version level of a
particular software component or the amount of memory or
disk space of a computer entity 8. The identity and state
aspects are stored in the entity relationship graph 162 as two
separate nodes with an edge between them. We will refer to
the edge between the identity and state nodes as a “state
edge”. Each state edge will have an attribute named “From”
for a start time when the edge became valid and an attribute
named “To” for end time indicating end time when the state
node was replace by a new state node with updated infor-
mation. A From attribute set to 0 indicates that it is still the
valid edge connecting the id node to the current state node.
Each time mutable information on the state node is being
updated, a new copy of the latest state node will be created
and updated to reflect the changes. A new state edge is
created from the identity node to the new state node whose
From time is set to the current time and To time is set to zero.
The To time on the previously active state edge is changed

10

15

20

25

30

35

40

45

50

55

60

65

32

from O to the current time indicating when it was superseded
by the new edge and state node.

FIG. 20 is an illustration of an exemplary segment of the
entity relationship graph according to an embodiment of the
present invention, showing how the entity relationship graph
subsystem 126 represents each entity 8 in the entity rela-
tionship graph 126 as a plurality of nodes 1500, 1502,
including an identity node 1500 representing an immutable
identity for the entity 8, one or more state nodes 1502
representing mutable properties of the entity 8, and state
edges 1504 connecting the identity node 1500 and each of
the one or more state nodes 1502 associated with the identity
node 1500. The state edges 1504 are each configured with
start and end timestamp properties defining a period of time
between the start and end timestamps during which the state
node 1502 is considered to represent a valid property for the
identity node 1500. The values assigned to the properties of
the entities 8 in the entity relationship graph 162 are then
updated by creating new state nodes 1502 with the updated
values for the properties and new state edges 1504 between
the identity nodes 1500 and the new state nodes 1502,
assigning to each new state edge 1504 a start timestamp
value indicating a creation time for the new state node 1502
and an end timestamp value indicating that the new state
node 1502 is currently valid, and assigning to each state
edge 1504 for the state nodes 1502 representing the previous
values of the property being updated an updated end time-
stamp value indicating the creation time for the new state
node.

More specifically, in the illustrated example, assuming the
times t1-t6 are sequential, a scenario is depicted where at
time t1 entity #1 (represented by the plurality of nodes 10-1)
was discovered and added to the graph. At time t2, a change
to some mutable attribute of entity #1 was discovered and
recorded in the graph as node 1502-2. At time t3, entity #2
(represented by the plurality of nodes 10-2) was discovered
and determined to have some relationship with entity #t1
(the exact nature of the relationship is not indicated in the
figure nor material to this description). At time t4, a change
to some mutable attribute of entity #2 was discovered and
recorded in the graph as node 1502-4. At time t5, another
change to some mutable attribute of entity #2 was discov-
ered and recorded in the graph as node 1502-5.

When looking for the state of an entity 8 at the current
moment the present system and method will filter out all
state edges with a “To” time attribute set to anything other
than 0 and all mutable data, such as entity attributes, will be
collected from the related state node with the remaining
edge with a To value of 0. If looking for information from
a particular time in the past the present system and method
filters all state edges 1504 except for edges having a “From”
time that is before the target time and having a “To” time that
is after the target time. If there is no state node edge having
a “To” time that is after the target time, then it will use the
state node with a “To” time of 0.

While this approach enables the user of the present system
and method to have a view of the state of the graph at any
instant in the past, it can also have limitations in terms of
rapid growth in the size of the graph and, as a result, the
performance and resource costs required to run it. This is
because every time there is a change to an entity 8 it will
cause a new node 1502 and edge 1504 to be added to the
graph. In order to mitigate this issue, the present system and
method deploys two techniques that can be used indepen-
dently or in combination.

FIG. 21 is a flow diagram illustrating an exemplary
process by which the entity relationship graph subsystem

US 12,120,134 B2

33

126 mitigates rapid growth of the entity relationship graph
162 according to an embodiment of the present invention.
Generally, this technique involves batching multiple
changes together onto a single state node in the graph.
According to the preferred embodiment, this technique
batches changes based on time interval. In step 1600, an
entity attribute change is received (e.g., in the form of new
event data indicating relevant changes to the entity relation-
ship graph 162). A “change window” is also specified. Each
time a change is made to an entity the graph server 248 will
examine the time since a new state node was created for that
entity 8 in step 1602. If that time is less than the change
window, then it simply updates the existing state node in
step 1610. If that time is greater than the change window,
then a new state node is first created, similar to the process
described above. Specifically, in step 1604 the graph server
248 sets the “To” value on the current state edge to indicate
the current time and in step 1606 makes a copy of the current
state node before making the requested attribute changes. In
1608, the graph server 248 creates a new edge from the
identity node to the new state node with a “From” value
equal to the current time and a “To” value equal to zero.
Finally, the process ends in step 1612.

In general, by increasing the change window, the user
reduces the rate at which the graph will grow. This comes at
the cost of losing granularity in terms of being able to
determine when a specific change was made or the sequence
of changes within the same change window.

Another technique involves taking periodic snapshots of
the graph 162, storing the snapshots to persistent storage,
and then pruning old state nodes and edges out of the current
copy of the graph.

FIG. 22 is a flow diagram illustrating an exemplary
process by which the entity relationship graph subsystem
126 mitigates rapid growth of the entity relationship graph
162 according to another embodiment of the present inven-
tion, showing how the graph server 248 periodically gener-
ates a snapshot of a current version of an existing entity
relationship graph 162 before modifying the current version
by removing edges considered to be expired based on
validity durations for the edges and a configurable expiration
time and recording the snapshot in a graph state history for
the entity relationship graph 162. In step 1700, the graph
server 248 receives a time-based query, and, in step 1702,
the graph server 248 determines whether the requested time
for the query is before the last saved snapshot of the entity
relationship graph 162. If so, in step 1704, the graph server
248 loads the first snapshot after the time requested for the
query into a new instance of the graph 162 in step 1704 and
then sets the query context to the new graph instance that
was loaded from the snapshot 1706. On the other hand, if the
requested time was not prior to the last snapshot, in step
1712, the graph server 248 keeps the query context pointing
to the current graph instance. Either way, in step 1708, the
query is executed and the results returned, and the process
ends in step 1710.

In the preferred embodiment of this technique a “snapshot
frequency” and a “retention window” are specified. On an
interval specified by the snapshot frequency the system will
automatically take a snapshot of the current graph and store
it off to persistent storage. The system and method will then
delete all state edges and associated state nodes where the
state edge “To” time is prior to the current time minus
retention window. If a user of the system is interested in
information related to the state of the graph prior to the last

10

15

20

25

30

35

40

45

50

55

60

65

34

snapshot then the system must read in the first snapshot after
the desired time, re-establish it in an active system and run
the query against it.

FIG. 23 is an illustration of an exemplary query submis-
sion screen 860 of the GUI 87 rendered on the display 84 of
the user device 80, according to an embodiment of the
present invention, showing how the GUI 87 via the query
submission screen 860 receives input from the user via the
input mechanism 66 of the user device 80 indicating time
values associated with queries. In the illustrated example,
the query submission screen 860 comprises a query input
field 862, and a date selector 864. The query submission
screen 860 receives the input from the user indicating a
selection of a textual query to execute via the query input
field 862 and receives input from the user indicating a
selection of a time value (e.g., the desired point in time that
is the subject of the query) via the date selector 864. When
the textual query is submitted for execution against the
entity relationship graph 162, the graph server 248 (for
example) modifies the submitted query based on the time
value associated with the query such that results of the
modified query includes only state nodes with start time-
stamp values indicating start times before the specified times
for the queries and end timestamp values either of zero or
indicating end times after the specified times for the queries.

For the purposes of simplifying descriptions and figures in
the rest of this disclosure, the identity node and all related
state nodes will be discussed and shown as if they were a
single node in the graph.

Mapping Dependencies of a Business Application or Other
Entity

In modern software application architectures, there is
often a complex web of interdependencies between software
components. Due to scale, complexity, the rate of change,
and the transition of individual developers on and off of
projects, it is often difficult for organizations to maintain an
accurate understanding of these interdependencies. One
significant side effect can be that changes and updates to a
given component can have unexpected impact to other
components, systems and applications causing failures and
significant impact to a business. It is imperative to devise an
effective way to automatically determine and monitor the
dependencies between the various components entities 8
which constitute, or support, a given computer environment
5 such as a business application.

To further illustrate this point, consider a common modern
architecture of an exemplary E-Commerce web application
as generalized in FIG. 24.

An application 1800 such as the one depicted in the
illustrated example generally comprises multiple logical
components such as the web application server 1804, the
database server 1806, firewall or other security components,
a load balancer 1802, a search index component, and many
different “microservices” 1814 fulfilling various functional
capabilities. Each of these logical components, in turn,
comprises one or more instances of the software for fulfill-
ing its purpose. This allows for automatic elastic scalability
and fault tolerance. When load increases and certain logical
components become overloaded, or if instances of the soft-
ware supporting that component fail for some reason, the
system can automatically instantiate more instances of the
software supporting that logical component. When load
subsides, the system can automatically turn off unneeded
instances to release resource utilization and save cost. This
can happen rapidly and frequently making it hard for an
application operator or a security professional to keep track
of which, and how many, instances of each software pro-

US 12,120,134 B2

35

gram are active at any point in time. This can also be
extended to consider underlying physical hardware support-
ing the software instances. Each of the software instances
and hardware components can have dependencies on many
other logical components, whose software instances and
underlying hardware have further dependencies, and so on.

In the context of this discussion, it will be understood that
if one software program requires information provided by
another software program in order to perform its function
then the first program has a dependency on the second
program. Similarly, if a software program is running on a
virtual or physical computer then the software program has
a dependency on the virtual or physical computer.

In the present system and method dependency relation-
ships between entities 8 are modeled as edges 11 in the entity
relationship graph 162 by the graph server 248. Many of
these relationships will be naturally discovered and modeled
through the mechanisms already discussed. For example, a
particular instance of software is running on a specific
computer. However, one form of dependency is recognized
by network connections and data flows between running
software programs. We will refer to these types of depen-
dencies as “dataflow dependencies”. By tapping into sys-
tems which are monitoring network connections or data
flows over the computer network these can be detected and
then represented as relationships between the entities 8
involved. This monitoring can be accomplished in many
ways and at many levels, including monitoring application
logfiles for entries indicating a network connection or tap-
ping into network devices and analyzing network flows. The
present system and method do not specify or limit the
mechanism for detecting a connection or data flow between
entities and can be adjusted to work with any mechanism.

Dataflow dependencies are unique in that they tend to be
very transient, repetitive and frequent. This is as opposed to
other relationships such as that of a software program
running on a virtual or physical computer, or the relationship
of'a particular vulnerability to a particular software program.
While a software program may start and eventually termi-
nate, the entire time it is active it will typically run on the
same computer. Whereas an entity 8 such as a “consuming”
software program may establish a connection, request and/or
post information and then disconnect from another entity 8
such as a “providing” software program hundreds or even
thousands of times per second. Conversely this may happen
only once per week or month for a very limited period of
time. Similarly, the occurrence of a user logging into a
system or software component is typically transient and
repetitive. In the computer security domain, situations like
this are often referred to as “events”. A connection between
two software programs on a particular destination TCP/IP
port would be considered a “connection event”. A user
logging into an application would be considered a “login
event”. These events represent dependencies and can be
tracked in the graph 162 as well.

Given the frequency and transient nature of this type of
dependency it may not be practical or helpful to represent
each interaction or event as a unique relationship, or edge 11,
between the corresponding nodes 10 in the graph 162. This
could overwhelm the graph 162. However, it is useful to be
able to distinguish the frequency and timing of connections
over time. For example, it is only partially interesting to
know that one software program connected to another
software program at least once in the history of time. It may
be far more interesting to know if such a connection has
happened in the last day or week and, if so, how many times.
This is particularly true for understanding dependencies that

10

15

20

25

30

35

40

45

50

55

60

65

36

change over time. To that point, it might be appropriate to
consider that certain types of events, such as a network
connection and data flow between two software programs,
should indicate a dependency between the software pro-
grams only if it has occurred within a certain period of time.
In other words, some event-based dependencies should fade
or timeout if not repeated within a certain period of time.
That period of time may vary based on the nature of the
software programs involved, the network protocol used, or
some other attribute of the interaction.

To accommodate the creation of accurate dependency
graphs, including dependencies related to events and data-
flows, the integration subsystem 168 represents these event-
based dependencies in the entity relationship graph 162 as
edges of a special type or label (for example an edge of type
“ConnectsTo”, “DependsOn”, or “LoggedInto”). These
edges will be referred to as “event-based edges”. Event-
based edges will have an attribute indicating when the
dependency edge was created (Start attribute) and when it is
valid until (End attribute). The validity duration of these
edges can vary based on the characteristics of the event. For
example, dependency edges related to a user login may be
valid for a day while a dependency edge related to a network
connection on a particular port may be valid for a month. As
these events are detected a specialized entity data collection
integration managed by the integration subsystem 168
passes information about the events to the graph access
service 246, which updates the graph 162 by adding an
event-based edge to reflect the dependency implied by the
event. The logic determining the duration of the event-based
dependency edges can be implemented by the entity data
collection integration or by rule logic implemented in the
graph access service 246 or rules engine 120. For network
connection driven events an edge will be created for each
unique source [P address, destination IP address and desti-
nation port combination.

FIG. 25 is a flow diagram illustrating an exemplary
process executed by the graph access service 246 and/or the
rules engine 120 for creating or updating event-trigged
dependencies in the entity relationship graph 162, according
to an embodiment of the present invention. In step 1900,
security or network infrastructure within the computer envi-
ronment 5 detect network activity that implies a dependency
between entities 8 in the computer environment 5. In step
1902, the entity event collector 110 discovers the event data
via the polling or alert infrastructure that has been previ-
ously described. Then, in step 1904, it is determined whether
the entities 8 pertaining to the event data are already in the
graph 162. If not, in step 1910, nodes 10 representing the
missing entities 8 are created and added to the graph. Each
time an event is identified indicating a particular dependency
if either entity does not already exist in the graph the graph
access service 246 creates a new node 10 representing that
entity 8. If a currently valid dependency edge does not
already exist between the corresponding entity nodes in step
1906, then a dependency edge is also created, the start time
is set to the current time, and the validity end time is set to
the current time plus the validity duration for that type of
event in step 1912. In step 1906, if a valid dependency edge
already exists between the corresponding nodes, then its
validity end time is updated to the current time plus the
validity duration in step 1908.

FIG. 26 is an illustration of an exemplary portion of the
entity relationship graph 162 according to an embodiment of
the present invention, demonstrating changes to the entity
relationship graph 162 as events are captured and the
corresponding dependencies are recorded in the graph over

US 12,120,134 B2

37

time. In the illustrated sequence, a user, UserA, logs into
software program Progl at time T1, followed by Progl
making a network connection to Prog2 on port 1433/tcp at
time T2, followed by Progl making a second subsequent
network connection to Prog2 on the same TCP/IP port at
time T3.

As with the concept of using identity and state nodes
1500, 1502 for tracking entity changes over time as dis-
cussed above, event-based edges could accumulate without
bounds and impact performance and the cost of operating
the system. Like in that situation, the present system and
method teach a technique for deleting expired event-based
edges in conjunction with periodic snapshots of the graph.
An “edge retention” period is defined. After each snapshots
all event-based edges which have an end time which is
before the current time minus the edge retention period are
deleted from the graph.

FIG. 27 is an illustration of an exemplary type definition
screen of the GUI 87 rendered on the display 84 of the user
device 80 showing an exemplary type definition for an entity
type according to one embodiment of the present invention.
The type definition is similar to that described with respect
to FIG. 8. Now, however, certain properties of the type
definition are depicted in more detail. In particular, a prop-
erty having a label of “x-samos-dependency” has a value of
“true,” indicating the definition of a relationship to be
considered a dependency relationship. Additionally, a prop-
erty having a label of “x-samos-dependency-duration™ has
an assigned value of “10 days,” indicating that the validity
duration (e.g., to be used to determine the end time attribute
for nodes 10 of this entity type) is set to 10 days, after which
the dependency will expire or no longer be considered valid.

With the graph constructed as described, a user of the
system can issue specialized graph queries which will return
segments of the graph representing a tree of dependencies
from a given starting entity. To do so the system will need
to be configured to, or the user will have to, specify which
edge types to be considered to represent dependencies. In the
preferred embodiment the indication of whether a relation-
ship type constitutes a dependency is specified as part of the
schema discussed above. The graph segment returned will
start from the specified starting entity and include all edges
and nodes encountered by recursively traversing every edge
of a type considered to represent dependencies. To generate
a dependency tree for the current time the query will exclude
any edges which have an End time which is in the past. To
generate a dependency tree for a time in the past the system
will first determine if that time is prior to the last snapshot.
If so, the system will first need to load the first snapshot
saved after the desired time. In either case the query is then
issued such that it excludes all event-based edges except
those whose Start attribute is before the desired time and
End attribute is after the desired time.

FIG. 28 is an illustration of the table display screen 820
previously described with respect to FIG. 12, showing how
the presently disclosed system and method enables gener-
ating the specialized graph queries for managing the com-
puter environment 5, specifically via a dependency graph
generator 870. As before, the table display screen 820
comprises the table pane 824 with selectable graphical
elements representing each line of a table, the table button
816, and the graph button 814. Selection of one of the
entities 8 indicated in the table pane 824 enables selection of
the dependency graph generator button 870, which, when
selected, generates a dependency query targeting the
inferred dependencies for the selected entity 8 indicated in
the table pane 824, transmits the dependency query for
execution against the entity relationship graph 162

FIG. 29 is an illustration of the graph display screen 800
previously described with respect to FIG. 9, showing how
the GUI 87, via the dependency graph generator button 870,

25

40

50

38

displays results of the dependency query described with
respect to FIG. 28. In this example, the graph display screen
800 would be displayed in response to user selection of the
dependency graph generator button 870 of the table display
screen 820 depicted in FIG. 28.

As before, the graph display screen 800 comprises the
directional buttons 804, the zoom buttons 806, and the graph
display pane 802 displaying a graph segment 150.

Now, however, the graph segment 150 displayed in the
graph display pane 802 is specifically one resulting from an
executed dependency query. A primary node element 808
representing a selected entity 8 (e.g., selected for depen-
dency graph generation via the dependency graph generator
870) is shown with a series of edge elements 812 represent-
ing the dependencies and a series of secondary node ele-
ments 810 representing the entities 8 with which the selected
entity 8 has a dependency relationship. More specifically, in
the illustrated example, the selected entity 8 is a computer
“demo-corp-win-s,” and the dependencies include its sub-
nets, [P address, MAC address, AWS image, storage volume,
and AWS availability zone.

FIG. 30 is an illustration of the graph display screen 800
previously described with respect to FIG. 29 showing how
the graph display screen 800 displays results of the depen-
dency query specifically based on requested dependency
type information input by the user indicating which types of
edges of the entity relationship graph 162 should be con-
sidered as representing dependencies for the purpose of the
dependency query.

As before, the dependency query results are displayed as
a graph segment 150 in the graph display pane 802.

Now, however, in response to user selection of a types
button 860, a types selection menu 882 has been revealed.
The types selection menu 882 comprises a series of type
selectors 884, which are selectable graphical elements rep-
resenting different edge and node types that can be toggled
on and off (e.g., by clicking on the type selectors 884 when
they are in an off state to toggle them on and clicking on the
type selectors 884 when they are in an on state to toggle
them off). In the illustrated example, the type selectors 884
are displayed as check boxes, all of which are toggled on, or
checked, with the exception of one labeled “EC2 Network
Interface. Textual information (“(1)”) indicates that the
query results for the dependency query would have included
anode element 810 representing an entity 8 of the type “EC2
Network Interface,” but such a node element 810 is not
displayed, because the type selector 884 for that type is
toggled off. In the same way, the type selectors 884 allow the
user input the requested dependency type information indi-
cating the selection of which types of edges should be
considered as representing dependencies, resulting in the
results only indicating the dependencies represented by
edges of the types indicated by the requested dependency
type information (e.g., the dependencies or edges having
type selectors 884 that are toggled on in the type selection
menu 882).

FIG. 31 is an illustration of the graph display screen 800
previously described with respect to FIGS. 29 and 30
showing how the graph display screen 800 displays results
of the dependency query specifically based on requested
entity type information input by the user indicating which
types of nodes 10 of the entity relationship graph 162 should
be targeted for the purpose of the query.

As before, the dependency query results are displayed as
a graph segment 150 in the graph display pane 802.

Now, however, among the graphical elements represent-
ing the nodes and edges is an indication of a hidden node
886. In the illustrated example, the hidden node 886 is
indicated by the dashed-line oval defining a region where
several graphical elements representing edges intersect sug-
gestive of a node element that is missing or hidden. Here, the

US 12,120,134 B2

39 40
requested entity type information (e.g., input by the user via The resulting graph segment may include a significant
the type selectors 884 of the type selection menu 882, which number of intermediate nodes which are not of interest to the
is now hidden) indicates that the hidden node 886 did not user. For example, the user might be interested in entities of

have an entity type that was selected by the user as one of type Software, EC2_Instance, VirtMachine and Storage.

the types to target for the purpose of the query. As a result, 3 FIG. 34 is an illustration of an exemplary graph segment
the graph display pane 802, in displaying the results of the that would be presented to the user via the GUI 87 upon
query, graphically depicts the dependency relationships filtering of the results by the browser user interface 138,

between the selected entity and entities omitted from the including collapsing or hiding node types that are not of
results via the requested entity type information as edges imnterest.
traversing through a hidden node. 10 Now, only the Software nodes 10-d, EC2 Instance nodes

FIG. 32 is an illustration of an exemplary portion of the 10-5, VirtMachine nodes 10-m, Storage nodes 10-n,
entity relationship graph 162 according to an embodimentof =~ RUNS_ON edges 11-g, and CONNECTS_TO edges 11-k

the present invention, demonstrating a scenario in which the would be displayed.

presently disclosed system enables a user to understand the Other variations of graph queries to display dependency

dependency tree for an organization’s eCommerce applica- 5 relationships are possible, including, but not limited to, the

tion, which is accessed at https://store.acme.com. In this following:

scenario, a graph segment also exists in the graph server 248 showing all entities on which a given entity depends;

related to the application that looks like the graph segment showing all entities of type SoftwareComponent, Data-

illustrated in FIG. 32, meaning the organization of nodes 10 baseServer or Computer on which a particular entity

and entities 11 as depicted in the illustrated example is both depends;

reflected in the graph segments displayed to the user via the 2° showing all entities which somehow depend on a particu-

user device 80 and reflected in how the organization is lar database server entity; and

organized and/or stored by the entity relationship graph showing all apache application server instances that have

subsystem 126. a dependency on entities of type DatabaseServer which
As in the previous graph segment example depicted in are tagged as containing personally identifiable infor-

FIG. 2, different types of nodes 10 and edges 11 are depicted. 25 mation (PII).

Specifically, the nodes 10 include EC2_Instance nodes 10-5, Mapping of Entities into Logical Components of a Business
Software nodes 10-d, network interface nodes 10-i, port Application

nodes 10-j, IP address nodes 10-k£, DNSName nodes 10-1, The presently disclosed system and method further pro-
VirtMachine nodes 10-m, and Storage nodes 10-n. The vides automatic grouping of entities 8 into meaningful
edges include RUNS_ON edges 11-g, BINDS_TO edges related collections. This categorization functionality enables
11-/, HOSTS edges 11-i, RESOLVES_TO edges 11-j, and users to work with and assess entities 8 as groups of like

CONNECTS_TO edges 11-£. items, for example, entities 8 with a common function or
A dependency mapping function takes a starting point purpose, or entities 8 with a common configuration. In many
such as a specific entity 8 represented in the graph server 248 use cases, this grouping is far more efficient than dealing
or an ingress point of a web application indicated by a user with entities 8 individually. In fact, in many cases the
of the system 100. In the illustrated example, the ingress is 35 number of entities 8 will be so large that it would be
represented as “store.acme.com:443.” The dependency map- infeasible for users to work with individual entities 8.
ping function starts by issuing a query to the graph access Returning to the example of typical modern web appli-
service for the ingress of the eCommerce app which is the cations depicted in FIG. 24, generally speaking, each
software component entity which is bound to TCP/IP port instance of software running in support of a given logical

443 on the IP address associated with the DNS name 47 component will be expected to have the same configuration,
store.acme.com. Using the popular Cypher graph query comply with the same policy, be susceptible to the same
language an appropriate query would be: vulnerabilities, to operate and interact with other entities in

MATCH (sw:Software)-[:BINDS_TO]-(p:Port {portNmbr: '443'})-[:HOSTS]-
(:IPAddr)-[:RESOLVES_TO]-(dns:DNSName {fqdn: 'store.acme.com'}) Return id(sw) AS

rootID

Then, using the returned software component as the the same way, be managed in the same way, etc. As soon as
starting point, the dependency mapping function submits a 50 a new entity 8 is discovered on the network it is important
query to the graph access service 246 to recursively traverse to quickly determine which, if any, of the logical compo-
all edges 11 of a type considered to represent a dependency, nents of an application it is supporting so that it can be

for example, the RUNS_ON edges 11-g, BINDS_TO edges determined what policy should be applied or what configu-
11-/, HOSTS edges 11-i, and CONNECTS_TO edges 11-k: ration should be in place or even if it is operating as expected

MATCH (sw:Software)-[:BINDS_TO]-(p:Port {portNmbr: '443'})-[:HOSTS]-
(:IPAddr)-[:RESOLVES_TO]-(dns:DNSName {fqdn: 'store.acme.com'}) match path=(root)-
[:RUNS_ONI|:BINDS_TOI:HOSTS|:CONNECTS_TO*1..20]-(1) where id(root) = id(sw)
return path

FIG. 33 is an illustration of an exemplary graph segment for entities 8 of that logical component. That said, keeping

that would be returned in response to the above query. track of which logical component a given entity 8 is sup-
porting can not be feasibly done by relying on humans alone
Now, the RESOLVES_TO edges 11-j and DNSName 65 to classify entities 8.

nodes 10-1 are omitted from the query results, because they The presently disclosed system and method include auto-
are not considered to represent hard dependencies. mated categorization of entities 8 into collections of like

US 12,120,134 B2

41

entities making up a common logical component of a
business application. This categorization can be based on a
combination of many things such as the network segment it
is present on, the combination of software installed and
operating on it, the TCP/IP ports it is listening on, the
business or technical owner, the network connections it is
participating in, and/or direct feedback from the business or
technical owner, among other examples. These and other
characteristics are processed in several ways to come to a
categorization decision. Such processing might include, but
is not limited to, a) rules configured by users of the system
and managed and executed by the rules engine 120 respon-
sive to the parameters discussed above, and b) machine
learning models trained based on these parameters. In one
embodiment, the machine learning engine 124 is imple-
mented as an integration managed by the integrations sub-
system 168 and driven by rules in the rules engine 120 and
workflows managed by the workflow engine 122. Once a
categorization is determined through one of these methods it
is recorded, for example, as an attribute of, or as a tag
attributed to, the corresponding entity as represented by the
graph server 248.

In general, FIGS. 35 and 36 are flow diagrams illustrating
exemplary automatic categorization processes according to
certain embodiments of the present invention. The depicted
examples show how the rules engine 120 and/or the machine
learning engine 124 are used to automatically categorize
entities 8 based on the nodes, properties of nodes, and
relationships between the nodes, as indicated in the entity
relationship graph 162.

FIG. 35 specifically concerns rules-based categorization
of' the entities 8 using the rules engine 120. In step 2400, the
rules engine 120 identifies a condition requiring categoriza-
tion of an entity 8. In step 2402, the rules engine 120 then
executes user-configurable logic for determining the catego-
rization. In step 2404 it is determined whether the catego-
rization was successtul. If it was, the attribute or tag on a
node 10 representing the entity 8 is set indicating the
categorization of that node 10 in step 2406, and the process
terminates in step 2408. On the other hand, if the categori-
zation was not successful, in step 2406, the attribute or tag
is set on the node 10 representing the entity 8 indicating as
much, and the process ends in step 2408.

In one example, the rules-based categorization includes
the GUI 87 presenting a categorization tool for generating
(e.g., based on input from the user received via the input
mechanism 66 of the user device 80) configuration infor-
mation for the rules indicating a selection of which nodes 10
representing the entities in the entity relationship graph 162
should be assessed for a particular categorization analysis.
The categorization tool sends the configuration information
to the rules engine 120, which monitors the entity relation-
ship graph 162 for the selected conditions and automatically
invokes the analysis according to the selected logic in
response to detecting the selected conditions.

10

15

20

25

30

35

40

45

50

42

The concept of a rules engine 120 and associated config-
ured rules coupled with the entity relationship graph 162 has
been previously described. Using that capability, a user of
the presently disclosed system 100 can define conditions
based on combinations of entity relationships, attributes or
tags to determine when categorization is appropriate or
required, as referred to in step 2400 in the process previously
described with respect to FIG. 24. The user can also define
logic which can be executed when the conditions arise (e.g.
an entity is discovered on a particular network segment
which doesn’t have any categorization tag associated with it)
and which will then derive a categorization logic and set an
attribute or apply a tag to the entity accordingly, as referred
to in step 2402. An example would be a rule which triggers
whenever a compute entity is discovered on a specific
network segment. The logic which is executed is designed
such that if the system has SMTP software installed and the
entity is listening on TCP/IP port 25 then it should be
categorized as the application’s SMTP relay. But if it has
Apache Tomcat installed and running and is listening on
TCP/IP port 443 then it should be categorized as one of the
application’s app servers. If the logic can come to a defini-
tive conclusion it could then set an attribute or tag on the
entity recording that categorization decision as referred to in
steps 2404 and 2410. However, if it fails to come to a
definitive conclusion, it can add a tag of “Uncategorized”
indicating that the entity could not be categorized but the
presence of this tag will prevent the rule from re-executing
the categorization logic in the future, as referred to in steps
2404 and 2406. This is just meant to be a demonstrative
example and not meant to limit the disclosure in any way in
terms of the nature of the rules or categorization logic which
can be defined or the method by which categorizations are
recorded or tracked.

The following is an exemplary query that is continuously
monitored (e.g., with respect to the entity relationship graph
162) by the rules engine 120 according to the preferred
embodiment of the present invention:

Match (e:EC2Instance {componentGrp: null})-[]->(:NetworkInterface)-[]-
>(:IPAddr)-[]->(:Subnet {cidr: *128.224.200.0/24°}) Return e

This query searches the graph 162 for any nodes of type
EC2Instance with the attribute componentGrp as ‘null” and
having a relationship with a NetworkInterface node that, in
turn, has a relationship with an IPAddr node that, in turn, has
a relationship with a Subnet node with an attribute ‘cidr’ set
to the value “128.224.200.0/24°. In other words, any EC2
instance on the 128.224.200.0/24 subnet and with the com-
ponentGrp attribute not set.

In another embodiment, the rules engine 120 is configured
to run a script implementing the logic expressed in the
following pseudocode on each returned EC2 instance (de-
noted as “Sinput”):

If(GraphQuery(“Match (e:EC2Instance {ec2ID: ‘$input.ec2ID’})-[]->(:Software-

[I->(:Port {portNmbr ‘1433°}) Return Count(e)”) > 0) then SetAttribute($input,
‘componentGrp’, “DBTier”)

Else if (GraphQuery(“Match (e:EC2Instance {ec2ID: “$input.ec2ID’})-[]-

>(:Software-[]->(:Port {portNmbr ‘111°}) Return Count(e)”) > 0) then SetAttribute($input,
‘componentGrp’, “StorageTier”)

Else If (GraphQuery(“Match (e:EC2Instance {ec2ID: ‘$input.ec2ID’})-[]-

>(:Software-[]->(:Port {portNmbr ‘25’}) Return Count(e)”) > 0) then SetAttribute($input,
‘componentGrp’, “SMTPTier”)

US 12,120,134 B2

43

-continued

44

Else if (GraphQuery(“Match (e:EC2Instance {ec2ID: “$input.ec2ID’})-[]-

>(:Software-[]->(:Port {portNmbr ‘443’}) Return Count(e)”) > 0) then SetAttribute($input,

‘componentGrp’, “AppSrvrTier”)
Else SetAttribute($input, ‘componentGrp’, “Unknown”)

Machine Learning

Given the scale in number of entities 8 in modern com-
puter environments 5, and given the nature of some types of
entities 8 being regularly and dynamically created and
destroyed or regularly joining and leaving the environment
5, manually assigning and maintaining the logical grouping
of entities may not be feasible. Also, the appropriate logic
for determining proper categorization may be complex to a
human trying to create it. The present system and method
employs the concept of incorporating a machine learning
(ML) engine 124. In one example, the ML engine 124 is
implemented as an integration managed by the integration
subsystem 168. In another example, the ML engine 124 is
implemented as a completely separate subsystem. The ML
engine 124 is responsible for applying machine learning and
pattern matching techniques to automatically assign entities
8 to appropriate groups of “similar” entities 8. By grouping
a multitude of entities 8 and tracking the attributes and
relationships of each entity in the entity relationship graph
162, and by building machine learning models which are
responsive to these attributes and relationships, the present
system and method can, with a high degree of accuracy,
automatically allocate entities 8 to the appropriate groups or
categories.

Using publicly available machine learning programs and
best practices embedded into the present system and
method, the system 100 enables user to build and train
machine learning models to achieve the automatic grouping
or categorization of entities 8 in the graph 162. The system
and method can accommodate many different machine
learning models designed for different groupings or catego-
rizations. For example, a given business application may
comprise multiple logical components including redundant
firewalls, load balancers, application servers, database serv-
ers, a multitude of custom-built services, etc. Each of those
logical components can be implemented as many physical or
virtual systems for the purposes of scalability or redundancy.
Each of the physical or virtual systems would be represented
in the graph as separate node. As each system is identified
and added to the graph 162 the present system and method,
according to one embodiment, proactively collects a multi-
tude of attributes about each system and record the system’s
interaction pattern with other systems. The interaction pat-
terns between systems will be modeled as edges between
nodes in the entity relationship graph 162. Certain of those
attributes and edges will demonstrate common patterns
among systems comprising the same logical component of
the business application. By allowing users to manually
identify some subset of the systems as being associated with
their particular logical components the present system and
method effectively trains the machine learning models to
identify those common patterns and automatically catego-
rize new systems which are later added to the computer
environment 5 to their associated logical component based
on these attributes and relationships.

FIG. 36 concerns the machine learning based categoriza-
tion of the entities 8 using the machine learning engine 124.
In step 2500, humans categorize initial entities 8 that are
systems comprising a business application into logical com-

10

25

40

45

ponents. Then, in step 2502, the dataset is split in half, with
one portion being designated as training data and the other
portion being designated as verification data. In step 2504,
the training data and the machine learning model configu-
ration is used to train the machine learning model, and in
step 2506, the verification data is passed through the
machine learning model to measure the model’s accuracy. In
step 2508, if the accuracy is sufficient, the model is deter-
mined to be ready to automatically categorize new entities 8.
In this case, the users periodically correct the machine
learning categorization in step 2512, and the process returns
to step 2502. On the other hand, if the model does not have
sufficient accuracy, in step 2510, a new configuration for the
machine learning model is selected, and the process returns
to step 2504.

According to one embodiment, the machine learning
engine 124 categorizes the entities 8 based on configuration
information received from a categorization tool of the GUI
87. The configuration information, which is generated based
on user input received via input mechanisms 66 of the user
device 80, indicates which nodes representing the entities 8
in the entity relationship graph 162 should be assessed for a
particular categorization analysis and which machine learn-
ing model(s) to be used to perform the categorization
analysis. The machine learning engine 124 monitors the
entity relationship graph 162 for the selected conditions
indicated by the configuration information and automati-
cally invokes an analysis using the selected machine learn-
ing model(s) in response to detecting the selected condi-
tions.

FIG. 37 is a flow diagram illustrating an exemplary
process by which the rules engine 120 and the workflow
engine 122 are used to invoke the machine learning catego-
rization, according to one embodiment of the present inven-
tion.

In step 2600, a new entity 8 is discovered in the computer
environment 5, and its attributes and relationships are auto-
matically recorded in the entity relationship graph 162, as
has been previously described. In step 2602, a rule is
configured (e.g., based on user input received via the GUI 87
of the user device 80) for the rules engine 120 to trigger on
entities 8 with specific attributes and/or relationships. Then,
in step 2604, a workflow is launched (e.g., via the rules
engine 120 and/or the workflow engine 122), including a call
for the machine learning engine 124 to automatically cat-
egorize the entity 8 using a specified machine learning
model.

Given the vast number of business applications and
entities existing in a medium to large enterprise and given
the possible rate of change of attributes related to each entity
8 and relationships between each entity 8, it is not feasible
to simply pass any new or changing entity 8 through the
various ML models. The system needs to be more intelligent
and targeted about the use of ML and take advantage of
additional context. This can be uniquely accomplished using
the rules and workflow capabilities which are core to the
current system and method and are discussed above (e.g.,
with respect to the functionality of the rules engine 120 and
the workflow engine 122). For example, the IP address

US 12,120,134 B2

45

subnet might be a strong indication of which business
application a given entity 8 is associated with. A rule could
be created (e.g., via the configuration tool on the user device
80) which would trigger whenever a new entity 8 is discov-
ered on the subnet in question with an action (directly or via
an invocation of a workflow) to categorize the entity 8 into
a logical business application component using an ML
model tuned specifically to the business application known
to use that subnet.

This capability will dramatically increase the usefulness
in modern environments by automatically keeping the
grouping of like entities far more accurate as the environ-
ment changes than would otherwise be possible.

One of the many factors which is expected to be consid-
ered in many target use cases is whether entities are behav-
ing in a “normal” or “abnormal” way. The machine learning
subsystem discussed above is further capable of applying
machine learning and pattern matching techniques to auto-
matically detect abnormal behavior of an entity. By tracking
the attributes and relationships of each entity in the graph,
and by building machine learning models which are respon-
sive to these attributes and relationships, the present system
and method can employ ML models to automatically deter-
mine if an entity is behaving in an abnormal way. An
illustrative example would be that a machine learning model
is built to categorize compute node entities based on the
operating system and software packages running on them,
the network segment they are running on, the ports they have
open for receiving network connections and the other sys-
tems they interact with over the network. A second machine
learning model can be created to assess the “normal” behav-
ior of compute nodes of a particular category. With these
machine learning models in place the present system and
method can automatically categorize entities in the graph,
detect abnormal behavior for that category, and tag the
entities accordingly. This abnormal behavior tag can then be
used to trigger rules and corresponding actions or otherwise
draw the attention of IT or cybersecurity professionals.

Accordingly, in one embodiment, the GUI 87 of the user
device 80 comprises a machine learning model training
screen, which detects selection by the user of pre-classified
data elements from the entity relationship graph 162 based
on input received from the user via an input mechanism 66
of the user device 80. The selected pre-classified data
elements are used to train the machine learning models. In
addition to classifying or existing unclassified data elements
such as entities 8, the machine learning engine 124 also
identifies patterns in the entity relationship graph 162 indi-
cating abnormal conditions of the computer environment 5
using the trained machine learning models. Additionally, the
machine learning engine 124 determines whether detected
changes in the entity relationship graph indicate abnormal
conditions of the computer environment 5 based on the
processing by the particular machine learning models to
which detected changes are determined to pertain.

As described above, given the vast size and rate of change
of a typical medium to large organization, this can only be
feasibly accomplished if executed in conjunction with the
other capabilities of the present system and methods such as
entity event collectors, relationship graphs, rules and work-
flows.

FIG. 38 is an illustration of an exemplary execute actions
screen 890 of the GUI 87 rendered on the display 84 of the
user device 80, showing an exemplary implementation of a
configuration tool for the machine learning engine 124
according to an embodiment of the present invention.

10

15

20

25

30

35

40

45

50

55

60

65

46

In the illustrated example, the execute actions screen 890
is displayed as a window that is overlaid on the table display
screen 820, for example, in response to selection of one or
more menu options presented on the table display screen 820
for producing the execute actions screen 890.

The execute actions screen 890 comprises a train model
selector 892 and an execute button 894. The train model
selector 892 is similar to the type selectors 884 provided on
the previously described types selection menu 882. More
specifically, the train model selector 892 is a selectable
graphical element displayed as a checkbox that can be
toggled on and off. In response to a user toggling on the train
model selector 892 and selecting the execute button 894, the
machine learning engine 124 executes the functionality of
training the machine learning model(s) as previously
described.

Transitive Risk Analysis

Given the overwhelming volume and diversity of cyber-
attacks facing a typical organization, along with the large
numbers of assets and related vulnerabilities in the organi-
zation, addressing every single cybersecurity concern is
infeasible. Organizations are forced to prioritize the most
significant cybersecurity threats and related remediation
activities. The challenge then becomes deciding which situ-
ations represent the greatest risk to the organization given
their current security posture and imminent threats. To
answer that question, organization have devised methods for
quantifying the magnitude of their various current cyberse-
curity risks.

Risk quantification generally involves a calculation based
on the expected loss magnitude (LM) of a given loss
scenario, the probability or expected frequency (known as
Loss Frequency, or LF) of the loss scenario being attempted
by a threat attacker, and the effectiveness of mitigating
controls, or mitigation strength (MS), which have been put
into place to prevent the loss scenario from occurring. In the
most simplistic terms, the current system and method pro-
poses that the risk associated with a particular loss scenario
could be defined by the following equation:

Risk=LM*LF*(1-MS)

Where:

Loss magnitude is measured in some relative scale, such
as 0-100, or in some monetary value, such as US
dollars.

Expected loss frequency is either the number of times an
attempt is expected, or the probability (scale of 0-1.0) of an
attempt in a given time window (typically annually).

Mitigation strength is a measure on a scale of 0-1.0, where
0 means that the mitigation in place has no impact on
preventing the loss scenario, and a value of 1 means that it
completely mitigates the loss scenario.

This is just one example of a cyber risk quantification
calculation and not meant to limit the scope of the present
system and method.

Organizations typically look across their cyber estate,
identify the loss scenarios they think are most significant and
try to formulate a risk score based on an equation similar to
the one above, using estimates, or probability distributions,
for the input values. This can be largely inaccurate and
ineffective due to the fact that it neglects the fact that each
of'the input values is not a static value but rather a value that
is reactive to the rapid and dynamic changes in the computer
environment 5 and the relationships between the entities 8
involved. Furthermore, the statuses of mitigating controls
are frequently changing. For example, one mitigating con-
trol against cyber-attacks may be that all computer systems

US 12,120,134 B2

47

with access to a sensitive dataset are patched for vulner-
abilities weekly. At any given time, the patching window
may elapse for any number of systems, or new systems may
be spun up which are not properly patched to support bursts
in demand.

The present system and method addresses these limita-
tions by leveraging a current and accurate graph (e.g., the
previously described entity relationship graph 162) of all
entities 8 interacting in the computer network to drive a
more precise and dynamic quantification of risk. The objec-
tive is to enable each of the parameters of some risk
equation, such as the one discussed above, or others, to be
specified as a function of attributes and relationships of the
entities held in the graph. For example, the loss magnitude
associated with a loss scenario could be varied based on
attributes of the dataset involved, such as whether it has been
determined that it contains sensitive information and the
number of sensitive records held. Similarly, the expected
frequency or probability of attack could be based on the
number of relationships to “threat” entities 8 and the specific
attributes of those related threat entities 8. Finally, there
could be numerous mitigating controls in place that can be
verified to be correctly implemented and functioning, or not,
based on queries into the graph in real-time. When those
mitigations are determined to not be functioning properly
(consider the example regarding entities are not being
patched weekly) the mitigating effect is reduced or zeroed
out.

In one preferred embodiment, the system and method
include the concept of a risk object which is meant to
represent the risk of loss associated with a particular loss
scenario. In operation, the risk objects as well as the sub-
objects for risk scenarios and mitigation controls are stored
in the graph database 140 like any other type in the system.
So just like there are machines, vulnerabilities, storage and
software entities with relationships between them, there are
also risk objects, risk scenarios and mitigation control
objects with relationships between them. In general, there is
a specific functionality of the system which operates on
those specific types to implement the algorithm described to
calculate a risk score.

Accordingly, in one embodiment of the present invention,
the GUI 87 rendered on the display 84 of the user device 80
receives input from a user (e.g., via the input mechanisms 66
of the user device 80). The input indicates definitions of risk
objects, risk scenarios, and mitigating controls relevant to
the computer environment 5. Risk information is generated
based on the user input, and the entity relationship graph
subsystem 126 generates a risk hierachy indicating associa-
tions between the risk objects and the risk scenarios as well
as associations between the risk scenarios and the mitigating
controls. Risk scores or quantifications for the computer
environment 5 are then calculated based on the risk hierar-
chy.

FIG. 39 is an illustration of a risk hierarchy graph segment
260, showing how the risk hierarchy organizes risk objects
262, risk scenarios 264, and mitigation controls 266 accord-
ing to an embodiment of the present invention.

In general, the risk object 262 comprises property infor-
mation for identifying the risk objects 262 and providing
useful information to users tasked with managing the com-
puter environment 5 using the risk hierarchy 260 and related
functionality and/or configuring the risk hierarchy 260. In
one example, the risk object 262 comprises property infor-
mation specifying name, description, and a description of
the scope for the risk being considered (e.g., in the form of

20

30

40

45

55

48
free-form text fields). Additionally, each risk object 262 is
associated with one or more Risk Scenarios (RS) 264 for the
risk object 260.

The risk scenarios 264 represent various situations in
which an associated loss could occur. In examples, the risk
scenarios 264 concern an authorized insider stealing credit
card data, or a malicious criminal compromising an autho-
rized account and using it to steal credit card data, to name
just a few. In one embodiment, each risk scenario 264
includes properties or attributes such as a name, description,
threat community (indicating the type of attacker being
considered, e.g. Privileged insider, Non-privileged insider,
Cybercriminal, Nation state, Other), an Expected Loss Mag-
nitude (ELM), and an Expected Loss Frequency (ELF)
expressed as expected times per year. Each risk scenario 264
also has relationships to zero or more scenario mitigation
controls (MC) 266.

The mitigation controls 266, generally, are measures that
are or can be put in place with respect to the computer
environment 5 to decrease the likelihood that the risk
scenario 264 with which the mitigation control 266 is
associated will actually occur in the computer environment
5. In one embodiment, the mitigation controls 266 might
refer to monitoring user behavior using UBA technology, or
requiring multi-factor authentication for access to all com-
ponent systems, to name just a few examples. Fach miti-
gating control 266 includes a name, description, mitigation
control strength (MCS), which is a value between 0 and 1.0,
and evaluation criteria, which is a method by which to
validate if that mitigating control 266 is in place in the
computer environment 5 and functioning correctly. In
examples, the method of validation indicated by the evalu-
ation criteria is a query into the entity relationship graph 162
(e.g., to assess whether the mitigating control 266 is in place
based on detected conditions in the computer environment
5) or a periodic manual user attestation. For query-validated
mitigations a graph query is specified as the evaluation
criteria, which will be used to identify the existence of any
control failures or gaps indicating that the control is not
properly implemented. For user attestation-validated miti-
gations an electronic communication mechanism is specified
in the evaluation criteria, such as an email or chat address,
of an individual or group expected to attest to the mitiga-
tion’s proper implementation. For user attestation-validated
mitigations a recurrence interval, and the grace period for
attestation are also specified. For user attestation-validated
mitigations the system and method invoke an automated
workflow which will interact with users via the specified
electronic communication mechanism according to the
specified recurrence interval to collect their attestation that
the mitigating control 264 is properly implemented and in
effect.

In one example, validating whether the mitigating control
266 is properly implemented in the computer environment 5
is performed by presenting a user interface via a user device
80 associated with the individual or group identified in the
evaluation criteria. The user interface generates confirma-
tion information concerning implementation of the mitigat-
ing control 266 based on user input received via the user
interface.

FIG. 40 is an illustration of an exemplary new risk screen
900 of the GUI 87 rendered on the display 84 of the user
device 80, showing how user input for new risk objects 262
is collected for generating the risk information on which the
risk hierarchy 260 is based. The new risk screen 900 has a
name input field 902 and a description input field 904, which
are graphical elements for receiving textual input from a

US 12,120,134 B2

49

user (e.g., via an input mechanism 66 of the user device 80).
The name field assigns the input text to a name attribute for
the risk object 262, and the description input field assigns the
input text to a description attribute for the risk object 262.
The new risk screen 900 also comprises a schedule time
selector 906, which is a graphical element for enabling a
user to select a time (e.g., to calculate the risk scores for the
risk object 262). Additionally, the new risk screen 900
comprises a label selector 908, which is a graphical element
enabling a user to associate existing or new labels with the
risk object 262 to facilitate useful user interaction with the
risk hierarchy 260 and other processes involved in managing
the computer environment 5 that are related to the risk
hierarchy 260. Finally, the new risk screen 900 comprises a
create risk button 910, which is a graphical element, selec-
tion of which causes the new risk object 262 to be created.

FIG. 41 is an illustration of an exemplary new risk
scenario screen 912 of the GUI 87 rendered on the display
84 of the user device 80, showing how user input for new
risk scenarios 264 is collected for generating the risk infor-
mation on which the risk hierarchy 260 is based. The new
risk scenario screen 912 comprises a risk object pane 914
and a risk scenario configuration pane 918. The risk object
pane 914 provides information concerning the risk object
262 to which the risk scenario 264 is associated. The risk
object pane 914 also comprises a new risk scenario button
916. In response to user selection of the new risk scenario
button 916, the risk scenario configuration pane 918 is
displayed for collecting the risk information pertaining to
the new risk scenario 264. The new risk scenario pane 918
comprises input fields similar in functionality to those
described with respect to the new risk screen 900, including
a name input field 920 pertaining to a name attribute for the
risk scenario 264, a description input field 922 pertaining to
a description attribute of the risk scenario 264, an expected
loss magnitude input field 924 pertaining to the expected
loss magnitude attribute of the risk scenario 264, an
expected loss frequency number and unit selector 926 per-
taining to the expected frequency attribute of the risk
scenario 264, and a threat community selector 928 pertain-
ing to the threat community attribute of the risk scenario
264. Finally, the risk scenario configuration pane 918 com-
prises an add to risk button 930, which is a graphical
element, selection of which causes a new risk scenario 264
to be created, and association of the newly created risk
scenario 264 with the risk object indicated in the risk object
pane 914.

FIG. 42 is an illustration of an exemplary new mitigating
control screen 932 of the GUI 87 rendered on the display 84
of the user device 80, showing how user input for new
mitigating controls 266 is collected for generating the risk
information on which the risk hierarchy 260 is based. Like
the new risk scenario screen 912, the new mitigating control
screen 932 comprises the risk object pane 914 and a miti-
gating control configuration pane 936. The risk object pane
914 is similar to that described with respect to the new risk
scenario screen 912. Now, however, the risk object pane 914
also comprises a new mitigating control button 934. In
response to user selection of the new mitigating control
button 934, the mitigating control configuration pane 936 is
displayed for collecting the risk information pertaining to
the new mitigating control 266. The new mitigating control
pane 936 comprises input fields similar in functionality to
those described with respect to the new risk screen 900, and
the new risk scenario screen 912, including a name input
field 938 pertaining to a name attribute for the mitigating
control 266, a description input field 940 pertaining to a

10

15

20

25

30

35

40

45

50

55

60

65

50

description attribute of the mitigating control 266, a miti-
gation strength input field 942 pertaining to the mitigation
strength attribute of the mitigating control 266, and a vali-
dation type selector 944 pertaining to either the validation
query or the valuation user attributes of the mitigating
control 266. The validation type selector 944 enables entry
by the user of text indicating the validation query or the
validation user by, for example, in response to selection of
one of the validation types presenting a subsequent input
field pertaining to the attribute indicated by that user’s
validation type selection (not illustrated). Finally, mitigating
control configuration pane 936 comprises an add to risk
button 946, which is a graphical element, selection of which
causes the new mitigating control 266 to be created, and
association of the newly created mitigating control with a
particular risk scenario indicated in the risk object pane 914.

FIG. 43 is an illustration of an exemplary risk status
screen 950 of the GUI 87 rendered on the display 84 of the
user device 80, showing status information and options for
configuring a risk object 262 are presented to the user. As
before, the risk status screen 950 comprises the risk object
pane 914, which is similar to that described with respect to
the other screens for configuring the various risk entities.
Now, however, the risk object pane 914 comprises a sum-
mary view of multiple risk scenarios, each associated with
a different new mitigating control button 934, which func-
tions similarly to that described with respect to the new
mitigating control screen 932. Similarly, the risk object pane
914 also comprises the new risk scenario button, which
functions similarly to that described with respect to the new
risk scenario screen 912. Finally, the risk status screen 950
comprises a save risk button 938, which, when selected by
the user, causes the new risk object 262, risk scenario(s) 264,
and mitigating control 266 to be saved (e.g., via transmission
of the risk information for the new objects to the entity
relationship graph database subsystem 126 to be added to a
new or existing risk hierarchy).

In one example, a user of the presently disclosed system
and method manually invokes a risk calculation for a risk
object 262 through a gesture or other input indicating such
a selection via an exposed user interface such as the GUI 87.
Periodic automated invocation of risk calculation can also be
scheduled. In either case this will execute a process which
will calculate the risk value at that moment. The total risk
value for the Risk is the sum of the risk values for each of
the associated risk scenarios, also referred to as the Scenario
Risk Contribution (SRC). The SRC of each risk scenario 264
is calculated as follows:

SRC=(ELM)*(ELF)*(1-MCS#1)*
(1-MCS#2)* . . . *(1-MCS#n)

Where the Mitigation Control Strength, MCS, of any
mitigation which failed validation is considered to be zero.

In the preferred embodiment, each risk object 262, risk
scenario 264, and mitigation control is stored as a node in a
graph such as the entity relationship graph 162 with attri-
butes for recording the specific parameters for the corre-
sponding types. For example, a node type for representing a
risk scenario would include attributes for recording the
name, description, threat community, expected loss magni-
tude, and expected loss frequency. Relationships between
the risk components are represented as edges between the
corresponding nodes in the graph. Each risk object node has
a relationship edge to each risk scenario node related to it,
and each risk scenario node has a relationship edge to each
mitigating control node related to it.

US 12,120,134 B2

51

FIG. 44 is a schematic diagram of the scheduling service
250 according to an embodiment of the present invention,
depicting the subsystems involved in the reoccurring sched-
uled assessment of the magnitude of the defined risk objects
262. The process is driven by the scheduling service 250.
Scheduling Logic 252 incorporated into the scheduling
service 250 acquires its configuration data from the graph
database 140, which, among other things, specifies the
assessment schedule associated with each risk object 262.
When a risk assessment is due, the scheduling logic 252
signals a risk calculation module 254 indicating the specific
risk object 262 to assess. The risk calculation module 254
acquires the details associated with the specified risk object
262, each of its related risk scenarios 264, and each risk
scenario’s related mitigating controls 266. With this infor-
mation, the calculation of the current risk score for a given
risk object 262 would be implemented as represented by the
following pseudo-code;

Given a Risk r
r.riskScore = 0;
For each Risk Scenario rs related to r

{

scenarioRiskContrib = rs. ELM*rs.ELF;
For each Mitigating Control mc related to s

If (me.AssessValidity == TRUE)
scenarioRiskContrib = scenarioRiskConrib*(1-mc.mes)

r.riskScore = rriskScore + scenarioRiskContrib;

In this pseudo-code example mc.Assess Validity is meant
to represent a function which determines whether the miti-
gating control 266 in question is considered valid. If the
mitigating control 266 is validated by a query, then the
function executes the query to determine if existence of any
non-conforming entities 8 is indicated in the entity relation-
ship graph 162. If one or more non-conforming entities 8 are
identified, then the mitigating control 266 is considered to
not be validated, in which case the function returns FALSE.
Otherwise, it returns TRUE. If the mitigating control 266 is
validated by user attestation, then the function determines if
a valid user attestation has been recorded within the required
timeframe and grace period. If not, then the mitigating
control 266 is considered to not be validated, and the
function returns FALSE. Otherwise, it returns TRUE.

The presently disclosed system 100 records each risk
scenario contribution as well as the validation status of each
mitigating control 266 at the time of the calculation. Spe-
cifically, the risk calculation results are passed to the graph
access service 246 which passes them to the graph server
248 for storage in the graph relational database 140.

As a result, a user of the system and method can drill into
risk objects 262, related risk scenarios 264, and related
mitigating controls 266 to determine the most significant
aspects contributing to the overall risk score. The user can
examine the results of any past calculations. The user can tag
risk objects and then create dashboard elements to display
the results of various risk objects 262 individually or aggre-
gated by tag or some other characteristic. They can also
display changes of individual or aggregated risk calculations
across different times.

FIG. 45 is an illustration of a risk dashboard screen 980
of the GUI 87 rendered on the display 84 of the user device
80, showing how individual and/or aggregated risk infor-
mation is displayed based on the risk hierarchy and risk
scores. The risk dashboard screen 980 is one example of how

10

15

20

25

30

35

40

45

50

55

60

65

52

the functionality in the paragraph above is implemented in
the presently disclosed system and method and generally
provides a user-customizable information display to facili-
tate management of the computer environment 5.

More specifically, the risk dashboard screen 980 com-
prises a search bar 982, a global summary pane 984, and one
or more dashboard elements 986. The search bar 982 enables
the user to input textual search queries with respect to the
risk information in the risk hierarchy and/or the entity
relationship information in the entity relationship graph 162.
In one example, in response to submission of a search query
via the search bar 982, a results screen is displayed (not
illustrated) providing more detailed individual and/or aggre-
gated risk information, particularly pertaining to risk objects
262, risk scenarios 264, and/or mitigating controls 266
having attributes or metadata matching the search query. The
global summary pane 984 provides statistical information
concerning the global status of all risk objects 162 and
associated entities for the entire computer environment. In
the illustrated example, the global summary pane 984 indi-
cates a quantity of active risk objects 262, cumulative risk
score across all active risk objects 262, and a percentage
change in the cumulative risk score since a previous busi-
ness quarter. Each of the dashboard elements 986 provides
at-a-glance statistics for an individual risk object 262 or a
group of risk objects 262, including a risk score associated
with the individual risk object 262 or the group of risk
objects in aggregate, a percentage change associated spe-
cifically with the risk score for that dashboard element, an
indication of tags assigned to the individual risk object 262
or group of risk objects 262 associated with the dashboard
element, an indication of when the most recent update to the
data pertaining to the dashboard element was completed,
and identifying textual information. In one example, the
labels or tags indicated for each of the dashboard elements
are also used by the risk dashboard screen 980 and possibly
other components of the present system to organize the risk
objects into groups. Additionally, the risk dashboard screen
980 comprises an add dashboard element button 988, which,
in response to selection by the user presents additional
configuration screens (not illustrated) for adding a new
dashboard elements 986 to persistently appear on the risk
dashboard screen 980.

In one variation of the preferred embodiment described
above, the risk scenario’s 264 expected loss magnitude can
be specified as an equation based on attributes and relation-
ships of entities 8 in the graph. The loss magnitude is
dynamically recalculated each time a risk calculation is
computed. One demonstrable example expressed in pseudo-
code could be the following:

LM=(#records in dataset containing PI)*$50+(#re-
cords in dataset containing credit card data)*
$25

In another variation of the preferred embodiment
described above, the risk scenario’s 264 expected frequency
can be specified as an equation based on attributes and
relationships of entities in the graph. The loss frequency is
dynamically recalculated each time a risk calculation is
computed. One demonstrable example expressed in pseudo-
code which assumes the presence of entities 8 of type
“Threat” in the entity relationship graph 162, which record
the attributes of cyber threats thought to be immanent for the
organization, and, according to one embodiment including
an expected frequency, is determined as follows:

LF=0.1+SUM(Threat.frequency); across all Threat
entities tagged as “eCommerce Apps”

US 12,120,134 B2

53

In yet another variation of the preferred embodiment
described above the values for a risk scenario’s 264
expected loss magnitudes, risk scenario’s 264 expected
frequencies, or mitigating control’s 266 mitigation strengths
can be specified as minimum, most likely, and maximum
values which can be used to generate probability distribu-
tions for those values. These distributions are then used to
feed Monte Carlo simulations of the risk calculations with
the output being a Risk probability distribution instead of a
discrete value.

The specific equations described above are meant to be
demonstrative and not limit the scope of the present system
and method. The novel aspect is a means to establish risk
quantification mechanisms based on a current and accurate
model of entities interacting in a computer environment,
their attributes, and their relationships and interactions with
other entities.

While this invention has been particularly shown and
described with references to preferred embodiments thereof,
it will be understood by those skilled in the art that various
changes in form and details may be made therein without
departing from the scope of the invention encompassed by
the appended claims.

What is claimed is:

1. A method for managing a computer environment, the
method comprising:

collecting event data for the computer environment from

a plurality of different data sources by connecting to
each data source and retrieving the event data available
from that data source;

generating entity relationship information indicating enti-

ties and relationships between entities that are relevant
to security of the computer environment based on the
collected event data from the plurality of different data
sources;

managing the computer environment based on the entity

relationship information by configuring a rules engine
with user-specified rules for detecting specified condi-
tions of the entities, properties of entities, and the
relationships between entities indicated by the entity
relationship information and for performing specified
actions in response to detecting the specified condi-
tions; and

identifying which rules of the rules engine can potentially

be triggered by detected changes in conditions indi-
cated by the entity relationship information and selec-
tively evaluating the changed conditions against the
specified conditions only with respect to the rules that
were identified as potentially being triggered by the
detected changes in the conditions.

2. The method of claim 1, further comprising detecting
relevant changes to the computer environment in the event
data from the plurality of different data sources, the relevant
changes including a presence in the computer environment
of new entities that were previously unknown, changes to
properties of entities that were previously identified as being
present in the computer environment, or disappearances
from the computer environment of entities that were previ-
ously identified as being present in the computer environ-
ment.

3. The method of claim 2, wherein generating the entity
relationship information comprises only modifying existing
entity relationship information to reflect the relevant
changes in the computer environment in response to deter-
mining that the relevant changes are not already represented
in the existing entity relationship information.

10

15

20

25

30

35

40

45

50

55

60

65

54

4. The method of claim 2, wherein collecting the event
data from the plurality of different data sources comprises
selectively retrieving only event data indicating the relevant
changes to the computer environment by periodically poll-
ing a data source for new event data reflecting the relevant
changes.

5. The method of claim 2, wherein collecting the event
data from the plurality of different data sources comprises
selectively retrieving only event data indicating the relevant
changes to the computer environment in response to alerts
transmitted by a data source.

6. The method of claim 1, wherein the specified actions
include executing user-defined operations with respect to the
computer environment.

7. The method of claim 6, further comprising user-
configurable software programs executing the user-defined
operations.

8. The method of claim 6, further comprising user-
configurable workflows provided by a workflow engine
executing the user-defined operations, wherein the user-
configurable workflows are configurable to invoke other
workflows or software programs.

9. The method of claim 1, further comprising generating
the entity relationship information based on type definitions
formatted according to a declarative schema definition lan-
guage, the type definitions including markup specifying
particular properties and relationships for different entity
types.

10. The method of claim 9, further comprising special
entity types specific to particular data sources inheriting
and/or extending the properties and relationships of other
entity types according to a specified entity type hierarchy,
the special entity types specifying additional properties and
relationships specific to the particular data sources.

11. The method of claim 1, wherein generating the entity
relationship information comprises generating an entity rela-
tionship graph, which represents the entities, the properties
of'the entities, and the relationships between the entities, and
storing the entity relationship graph in a graph database.

12. The method of claim 11, wherein managing the
computer environment based on the entity relationship infor-
mation comprises rendering a graphical user interface on a
display of a user device, the graphical user interface com-
prising a query builder that generates graph-based queries
based on input from a user via an input mechanism of the
user device, transmits the graph-based queries for execution
against the entity relationship graph, and displays results of
the graph-based queries.

13. The method of claim 12, further comprising the query
builder limiting selections by the user for the graph-based
queries to valid combinations of entity types, relationships,
and properties based on type definitions specifying particu-
lar properties and relationships for each entity type in the
entity relationship information.

14. The method of claim 13, further comprising the query
builder detecting gestures input by the user via the input
mechanism indicating selection of entity types and dragging
of graphical elements representing the selected entity types
into a query pane, the query builder automatically determin-
ing and displaying valid relationship paths between the
graphical elements representing the selected entity types, the
query builder receiving input from the user indicating selec-
tion of which of the displayed valid relationship paths to be
referenced in a graph-based query, and the query builder
receiving input from the user indicating selection of specific
valid properties for each displayed graphical element rep-

US 12,120,134 B2

55

resenting the selected entity types to further quantitfy or limit
graph patterns targeted via the graph-based query.

15. The method of claim 11, wherein generating the entity
relationship graph further comprises representing each of the
entities in the entity relationship graph as a plurality of
nodes, including an identity node representing an immutable
identity for the entity, one or more state nodes representing
mutable properties of the entity, and state edges connecting
the identity node and each of the one or more state nodes
associated with the identity node.

16. The method of claim 15, further comprising the state
edges being configured with start and end timestamp prop-
erties defining a period of time between start and end
timestamps during which the state node is considered to
represent a valid property for the identity node.

17. The method of claim 15, further comprising updating
values assigned to the properties of the entities in the entity
relationship graph by creating new state nodes with the
updated values for the properties and new state edges
between the identity nodes and the new state nodes, assign-
ing to each new state edge a start timestamp value indicating
a creation time for a new state node and an end timestamp
value indicating that the new state node is currently valid,
and assigning to each state edge for the state nodes repre-
senting previous values of the property being updated an
updated end timestamp value indicating the creation time for
the new state node.

18. The method of claim 17, further comprising receiving
input from a user via an input mechanism of a user device
indicating time values associated with queries submitted for
execution against the entity relationship graph and modify-
ing the submitted queries based on the time values associ-
ated with the queries such that results of the modified queries
include only state nodes with start timestamp values indi-
cating start times before the time values for the queries and
end timestamp values either of zero or indicating end times
after the time values for the queries.

19. The method of claim 11, wherein managing the
computer environment based on the entity relationship infor-
mation comprises developing machine learning models for
identifying patterns in the entity relationship graph.

20. The method of claim 19, further comprising rendering
a graphical user interface on a display of a user device, the
graphical user interface comprising a machine learning
model training screen that detects selection by a user of
pre-classified data elements from the entity relationship
graph based on input received from the user via an input
mechanism of the user device, training the machine learning

10

15

20

25

30

35

40

45

56

models using the selected pre-classified data elements, and
classifying future or existing unclassified data elements from
the entity relationship graph and/or identifying the patterns
in the entity relationship graph indicating abnormal condi-
tions of the computer environment using the trained machine
learning models.
21. The method of claim 20, further comprising detecting
changes in the entity relationship graph and submitting the
changes in the entity relationship graph to be processed by
particular machine learning models in response to determin-
ing that the detected changes pertain to the particular
machine learning models.
22. The method of claim 21, further comprising deter-
mining whether the detected changes in the entity relation-
ship graph indicate abnormal conditions of the computer
environment based on the processing by the particular
machine learning models to which the detected changes
were determined to pertain.
23. A system for managing a computer environment, the
system comprising:
a workstation system for executing one or more entity
event collectors for collecting event data for the com-
puter environment from a plurality of different data
sources by connecting to each data source and retriev-
ing the event data available from that data source;
a server system for executing a database system, which
generates entity relationship information indicating
entities and the relationships between entities that are
relevant to security of the computer environment based
on the collected event data from the plurality of dif-
ferent data sources, wherein the server system manages
the computer environment based on the entity relation-
ship information by:
configuring a rules engine with user-specified rules for
detecting specified conditions of the entities, prop-
erties of entities, and the relationships between enti-
ties indicated by the entity relationship information
and for performing specified actions in response to
detecting the specified conditions; and by

identifying which rules of the rules engine can poten-
tially be triggered by detected changes in conditions
indicated by the entity relationship information and
selectively evaluating the changed conditions against
the specified conditions only with respect to the rules
that were identified as potentially being triggered by
the detected changes in the conditions.

#* #* #* #* #*

